Ibrahim M. Almanjahie, Salim Bouzebda, Zoulikha Kaid, Ali Laksaci
{"title":"The local linear functional kNN estimator of the conditional expectile: uniform consistency in number of neighbors","authors":"Ibrahim M. Almanjahie, Salim Bouzebda, Zoulikha Kaid, Ali Laksaci","doi":"10.1007/s00184-023-00942-0","DOIUrl":null,"url":null,"abstract":"<p>The main purpose of the present paper is to investigate the problem of the nonparametric estimation of the expectile regression in which the response variable is scalar while the covariate is a random function. More precisely, an estimator is constructed by using the local linear <i>k</i> Nearest Neighbor procedures (<i>k</i>NN). The main contribution of this study is the establishment of the Uniform consistency in Number of Neighbors of the constructed estimators. These results are established under fairly general structural conditions on the classes of functions and the underlying models. The usefulness of our result for the smoothing parameter automatic selection is discussed. Some simulation studies are carried out to show the finite sample performances of the <i>k</i>NN estimator. The theoretical uniform consistency results, established in this paper, are (or will be) key tools for many further developments in functional data analysis.</p>","PeriodicalId":49821,"journal":{"name":"Metrika","volume":"44 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00184-023-00942-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
The main purpose of the present paper is to investigate the problem of the nonparametric estimation of the expectile regression in which the response variable is scalar while the covariate is a random function. More precisely, an estimator is constructed by using the local linear k Nearest Neighbor procedures (kNN). The main contribution of this study is the establishment of the Uniform consistency in Number of Neighbors of the constructed estimators. These results are established under fairly general structural conditions on the classes of functions and the underlying models. The usefulness of our result for the smoothing parameter automatic selection is discussed. Some simulation studies are carried out to show the finite sample performances of the kNN estimator. The theoretical uniform consistency results, established in this paper, are (or will be) key tools for many further developments in functional data analysis.
期刊介绍:
Metrika is an international journal for theoretical and applied statistics. Metrika publishes original research papers in the field of mathematical statistics and statistical methods. Great importance is attached to new developments in theoretical statistics, statistical modeling and to actual innovative applicability of the proposed statistical methods and results. Topics of interest include, without being limited to, multivariate analysis, high dimensional statistics and nonparametric statistics; categorical data analysis and latent variable models; reliability, lifetime data analysis and statistics in engineering sciences.