Johannes W.P. Kuiper , Helena L. Gregg , Meike Schüber , Jule Klein , Christof R. Hauck
{"title":"Controling the cytoskeleton during CEACAM3-mediated phagocytosis","authors":"Johannes W.P. Kuiper , Helena L. Gregg , Meike Schüber , Jule Klein , Christof R. Hauck","doi":"10.1016/j.ejcb.2024.151384","DOIUrl":null,"url":null,"abstract":"<div><p>Phagocytosis, an innate defense mechanism of multicellular animals, is initiated by specialized surface receptors. A phagocytic receptor expressed by human polymorphonuclear granulocytes, the major professional phagocytes in our body, is one of the fastest evolving human proteins implying a special role in human biology. This receptor, CEACAM3, is a member of the CarcinoEmbryonic Antigen-related Cell Adhesion Molecule (CEACAM) family and dedicated to the immediate recognition and rapid internalization of human-restricted pathogens. In this focused contribution, we will review the special adaptations of this protein, which co-evolves with different species of mucosa-colonizing bacteria. While the extracellular Immunoglobulin-variable (Ig<sub>V</sub>)-like domain recognizes various bacterial adhesins, an Immunoreceptor Tyrosine-based Activation Motif (ITAM)-like sequence in the cytoplasmic tail of CEACAM3 constitutes the central signaling hub to trigger actin rearrangements needed for efficient phagocytosis. A major emphasis of this review will be placed on recent findings, which have revealed the multi-level control of this powerful phagocytic device. As tyrosine phosphorylation and small GTPase activity are central for CEACAM3-mediated phagocytosis, the counterregulation of CEACAM3 activity involves the receptor-type protein tyrosine phosphatase J (PTPRJ) as well as the Rac-GTP scavenging protein Cyri-B. Interference with such negative regulatory circuits has revealed that CEACAM3-mediated phagocytosis can be strongly enhanced. In principle, the knowledge gained by studying CEACAM3 can be applied to other phagocytic systems and opens the door to treatments, which boost the phagocytic capacity of professional phagocytes.</p></div>","PeriodicalId":12010,"journal":{"name":"European journal of cell biology","volume":"103 1","pages":"Article 151384"},"PeriodicalIF":4.5000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0171933524000013/pdfft?md5=4798bb4d47d6bfa948d88ff0b3ae6059&pid=1-s2.0-S0171933524000013-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of cell biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0171933524000013","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Phagocytosis, an innate defense mechanism of multicellular animals, is initiated by specialized surface receptors. A phagocytic receptor expressed by human polymorphonuclear granulocytes, the major professional phagocytes in our body, is one of the fastest evolving human proteins implying a special role in human biology. This receptor, CEACAM3, is a member of the CarcinoEmbryonic Antigen-related Cell Adhesion Molecule (CEACAM) family and dedicated to the immediate recognition and rapid internalization of human-restricted pathogens. In this focused contribution, we will review the special adaptations of this protein, which co-evolves with different species of mucosa-colonizing bacteria. While the extracellular Immunoglobulin-variable (IgV)-like domain recognizes various bacterial adhesins, an Immunoreceptor Tyrosine-based Activation Motif (ITAM)-like sequence in the cytoplasmic tail of CEACAM3 constitutes the central signaling hub to trigger actin rearrangements needed for efficient phagocytosis. A major emphasis of this review will be placed on recent findings, which have revealed the multi-level control of this powerful phagocytic device. As tyrosine phosphorylation and small GTPase activity are central for CEACAM3-mediated phagocytosis, the counterregulation of CEACAM3 activity involves the receptor-type protein tyrosine phosphatase J (PTPRJ) as well as the Rac-GTP scavenging protein Cyri-B. Interference with such negative regulatory circuits has revealed that CEACAM3-mediated phagocytosis can be strongly enhanced. In principle, the knowledge gained by studying CEACAM3 can be applied to other phagocytic systems and opens the door to treatments, which boost the phagocytic capacity of professional phagocytes.
期刊介绍:
The European Journal of Cell Biology, a journal of experimental cell investigation, publishes reviews, original articles and short communications on the structure, function and macromolecular organization of cells and cell components. Contributions focusing on cellular dynamics, motility and differentiation, particularly if related to cellular biochemistry, molecular biology, immunology, neurobiology, and developmental biology are encouraged. Manuscripts describing significant technical advances are also welcome. In addition, papers dealing with biomedical issues of general interest to cell biologists will be published. Contributions addressing cell biological problems in prokaryotes and plants are also welcome.