Optimization problems on nodes of Sturm–Liouville operators with $$L^p$$ potentials

IF 1.3 2区 数学 Q1 MATHEMATICS
Jifeng Chu, Gang Meng, Feng Wang, Meirong Zhang
{"title":"Optimization problems on nodes of Sturm–Liouville operators with $$L^p$$ potentials","authors":"Jifeng Chu, Gang Meng, Feng Wang, Meirong Zhang","doi":"10.1007/s00208-023-02784-7","DOIUrl":null,"url":null,"abstract":"<p>The aim of this paper is to obtain the optimal characterizations of locations for all nodes of the classical Sturm-Liouville operators, given the <span>\\(L^p\\)</span> norms with <span>\\(1&lt;p &lt;\\infty \\)</span> of the potentials. Regarding the <i>i</i>th node of the <i>m</i>th eigenfunction as a functional of the potential, we deduce critical equations to determine the minimizing potential such that the node is minimized. From the critical equations, we obtain two equivalent characterizations of the minimal nodes, which are written as nonlinear systems for 4-dimensional or 2-dimensional parameters. These optimal characterizations can yield the sharp lower and upper bounds for the locations of nodes.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"11 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-023-02784-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is to obtain the optimal characterizations of locations for all nodes of the classical Sturm-Liouville operators, given the \(L^p\) norms with \(1<p <\infty \) of the potentials. Regarding the ith node of the mth eigenfunction as a functional of the potential, we deduce critical equations to determine the minimizing potential such that the node is minimized. From the critical equations, we obtain two equivalent characterizations of the minimal nodes, which are written as nonlinear systems for 4-dimensional or 2-dimensional parameters. These optimal characterizations can yield the sharp lower and upper bounds for the locations of nodes.

Abstract Image

具有 $$L^p$$ 势的 Sturm-Liouville 算子节点上的优化问题
本文旨在获得经典斯特姆-利乌维尔算子所有节点位置的最优特征,给定势的\(L^p\)规范与\(1<p <\infty\)。将第 m 个特征函数的第 i 个节点视为势的函数,我们推导出临界方程来确定最小化势,从而使节点最小化。根据临界方程,我们可以得到最小节点的两种等效特征,它们可以写成 4 维或 2 维参数的非线性系统。这些最优表征可以得出节点位置的尖锐下限和上限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信