Ground state solution for a weighted fourth-order Schrödinger equation with exponential growth nonlinearity

Pub Date : 2024-01-06 DOI:10.1007/s10986-023-09617-9
Rima Chetouane, Brahim Dridi, Rached Jaidane
{"title":"Ground state solution for a weighted fourth-order Schrödinger equation with exponential growth nonlinearity","authors":"Rima Chetouane, Brahim Dridi, Rached Jaidane","doi":"10.1007/s10986-023-09617-9","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we establish the existence of a ground state solution for a weighted fourth-order equation of Shrödinger type under boundary Dirichlet condition in the unit ball <i>B</i> of ℝ<sup>4</sup>. The potential <i>V</i> is a continuous positive function bounded away from zero in <i>B</i>. The nonlinearity of the equation is assumed to have exponential growth due to Adams-type inequalities combined with polynomial term. We use the constrained minimization in the Nehari set, the quantitative deformation lemma, and degree theory results.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10986-023-09617-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we establish the existence of a ground state solution for a weighted fourth-order equation of Shrödinger type under boundary Dirichlet condition in the unit ball B of ℝ4. The potential V is a continuous positive function bounded away from zero in B. The nonlinearity of the equation is assumed to have exponential growth due to Adams-type inequalities combined with polynomial term. We use the constrained minimization in the Nehari set, the quantitative deformation lemma, and degree theory results.

分享
查看原文
具有指数增长非线性的加权四阶薛定谔方程的基态解
在本文中,我们确定了在ℝ4 的单位球 B 中边界狄利克特条件下薛定谔型加权四阶方程的基态解的存在性。由于亚当斯型不等式与多项式项相结合,方程的非线性假定为指数增长。我们使用了 Nehari 集合中的约束最小化、定量变形 Lemma 和度理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信