Using UAV multispectral photography to discriminate plant species in a seep wetland of the Fynbos Biome

IF 1.6 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Kevin Musungu, Timothy Dube, Julian Smit, Moreblessings Shoko
{"title":"Using UAV multispectral photography to discriminate plant species in a seep wetland of the Fynbos Biome","authors":"Kevin Musungu, Timothy Dube, Julian Smit, Moreblessings Shoko","doi":"10.1007/s11273-023-09971-y","DOIUrl":null,"url":null,"abstract":"<p>Wetlands harbour a wide range of vital ecosystems. Hence, mapping wetlands is essential to conserving the ecosystems that depend on them. However, the physical nature of wetlands makes fieldwork difficult and potentially erroneous. This study used multispectral UAV aerial photography to map ten wetland plant species in the Fynbos Biome in the Steenbras Nature Reserve. We developed a methodology that used K-Nearest Neighbour (KNN), Support Vector Machine (SVM), and Random Forest (RF) machine learning algorithms to classify ten wetland plant species using the preselected bands and spectral indices. The study identified Normalized green red difference index (NGRDI), Red Green (RG) index, Green, Log Red Edge (LogRE), Normalized Difference Red-Edge (NDRE), Chlorophyll Index Red-Edge (CIRE), Green Ratio Vegetation Index (GRVI), Normalized Difference Water Index (NDWI), Green Normalized Difference Vegetation Index <b>(</b>GNDVI) and Red as pertinent bands and indices for classifying wetland plant species in the Proteaceae, Iridaceae, Restionaceae, Ericaceae, Asteraceae and Cyperaceae families. The classification had an overall accuracy of 87.4% and kappa accuracy of 0.85. Thus, the findings are pertinent to understanding the spectral characteristics of these endemic species. The study demonstrates the potential for UAV-based remote sensing of these endemic species.</p>","PeriodicalId":49363,"journal":{"name":"Wetlands Ecology and Management","volume":"26 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wetlands Ecology and Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11273-023-09971-y","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Wetlands harbour a wide range of vital ecosystems. Hence, mapping wetlands is essential to conserving the ecosystems that depend on them. However, the physical nature of wetlands makes fieldwork difficult and potentially erroneous. This study used multispectral UAV aerial photography to map ten wetland plant species in the Fynbos Biome in the Steenbras Nature Reserve. We developed a methodology that used K-Nearest Neighbour (KNN), Support Vector Machine (SVM), and Random Forest (RF) machine learning algorithms to classify ten wetland plant species using the preselected bands and spectral indices. The study identified Normalized green red difference index (NGRDI), Red Green (RG) index, Green, Log Red Edge (LogRE), Normalized Difference Red-Edge (NDRE), Chlorophyll Index Red-Edge (CIRE), Green Ratio Vegetation Index (GRVI), Normalized Difference Water Index (NDWI), Green Normalized Difference Vegetation Index (GNDVI) and Red as pertinent bands and indices for classifying wetland plant species in the Proteaceae, Iridaceae, Restionaceae, Ericaceae, Asteraceae and Cyperaceae families. The classification had an overall accuracy of 87.4% and kappa accuracy of 0.85. Thus, the findings are pertinent to understanding the spectral characteristics of these endemic species. The study demonstrates the potential for UAV-based remote sensing of these endemic species.

Abstract Image

利用无人飞行器多光谱摄影技术鉴别芬波斯生物群落渗漏湿地的植物物种
湿地孕育着各种重要的生态系统。因此,绘制湿地地图对于保护依赖湿地的生态系统至关重要。然而,湿地的物理特性给实地工作带来了困难和潜在的错误。本研究利用多光谱无人机航空摄影绘制了 Steenbras 自然保护区 Fynbos 生物群落中的十种湿地植物。我们开发了一种方法,使用 K-Nearest Neighbour (KNN)、支持向量机 (SVM) 和随机森林 (RF) 机器学习算法,利用预选波段和光谱指数对十种湿地植物物种进行分类。研究确定了归一化绿红差异指数(NGRDI)、红绿(RG)指数、绿色、对数红边(LogRE)、归一化差异红边(NDRE)、叶绿素指数红边(CIRE)、绿比植被指数(GRVI)、将归一化水差异指数 (NDWI)、绿色归一化差异植被指数 (GNDVI) 和红色作为相关的波段和指数,用于对原生植物科、鸢尾科、蔷薇科、爱丽斯科、菊科和香柏科的湿地植物物种进行分类。分类的总体准确率为 87.4%,卡帕准确率为 0.85。因此,研究结果有助于了解这些特有物种的光谱特征。该研究证明了无人机遥感这些特有物种的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Wetlands Ecology and Management
Wetlands Ecology and Management ENVIRONMENTAL SCIENCES-WATER RESOURCES
CiteScore
3.60
自引率
5.60%
发文量
46
审稿时长
>12 weeks
期刊介绍: Wetlands Ecology and Management is an international journal that publishes authoritative and original articles on topics relevant to freshwater, brackish and marine coastal wetland ecosystems. The Journal serves as a multi-disciplinary forum covering key issues in wetlands science, management, policy and economics. As such, Wetlands Ecology and Management aims to encourage the exchange of information between environmental managers, pure and applied scientists, and national and international authorities on wetlands policy and ecological economics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信