{"title":"Shear Behaviour of RC Beams Strengthened using CFRP Grid-ECC/PMM Matrix Composites: An Experimental and Numerical Investigation","authors":"Xu Yang, Jun-Qi Huang","doi":"10.3151/jact.22.1","DOIUrl":null,"url":null,"abstract":"</p><p>In recent advancements, a novel strengthening approach employing engineered cementitious composites (ECC) and fibre-reinforced polymer (FRP) materials has emerged. This method integrates ECC as the matrix, carbon fibre-reinforced polymer (CFRP) grid as the internal strengthening component, and epoxy resin for bonding the overlay to the concrete substrate. This study conducted tests on four reinforced concrete (RC) beams under a four-point load configuration. One beam served as an un-strengthened control specimen, while three were subjected to different shear strengthening methods: polymer-modified mortar (PMM), ECC, and CFRP grid-reinforced ECC matrix composites layer (FGREM). The investigation covered failure modes, load-deformation relationships, and load-strain relationships. Finite element (FE) analysis was employed to reproduce the test results. Key findings include the ability of ECC as a matrix to substantially reduce concentrated interfacial bond stresses, preventing debonding failure. The FGREM-strengthened specimen exhibited a failure mode characterized by side concrete cover separation, resulting in a notable 124% enhancement in shear resistance. The proposed FE model, incorporating interfacial behaviour, accurately simulated the performance of all specimens.</p>\n<p></p>","PeriodicalId":14868,"journal":{"name":"Journal of Advanced Concrete Technology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Concrete Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3151/jact.22.1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent advancements, a novel strengthening approach employing engineered cementitious composites (ECC) and fibre-reinforced polymer (FRP) materials has emerged. This method integrates ECC as the matrix, carbon fibre-reinforced polymer (CFRP) grid as the internal strengthening component, and epoxy resin for bonding the overlay to the concrete substrate. This study conducted tests on four reinforced concrete (RC) beams under a four-point load configuration. One beam served as an un-strengthened control specimen, while three were subjected to different shear strengthening methods: polymer-modified mortar (PMM), ECC, and CFRP grid-reinforced ECC matrix composites layer (FGREM). The investigation covered failure modes, load-deformation relationships, and load-strain relationships. Finite element (FE) analysis was employed to reproduce the test results. Key findings include the ability of ECC as a matrix to substantially reduce concentrated interfacial bond stresses, preventing debonding failure. The FGREM-strengthened specimen exhibited a failure mode characterized by side concrete cover separation, resulting in a notable 124% enhancement in shear resistance. The proposed FE model, incorporating interfacial behaviour, accurately simulated the performance of all specimens.
期刊介绍:
JACT is fast. Only 5 to 7 months from submission to publishing thanks to electronic file exchange between you, the reviewers and the editors.
JACT is high quality. Peer-reviewed by internationally renowned experts who return review comments to ensure the highest possible quality.
JACT is transparent. The status of your manuscript from submission to publishing can be viewed on our website, greatly reducing the frustration of being kept in the dark, possibly for over a year in the case of some journals.
JACT is cost-effective. Submission and subscription are free of charge . Full-text PDF files are available for the authors to open at their web sites.
Scope:
*Materials:
-Material properties
-Fresh concrete
-Hardened concrete
-High performance concrete
-Development of new materials
-Fiber reinforcement
*Maintenance and Rehabilitation:
-Durability and repair
-Strengthening/Rehabilitation
-LCC for concrete structures
-Environmant conscious materials
*Structures:
-Design and construction of RC and PC Structures
-Seismic design
-Safety against environmental disasters
-Failure mechanism and non-linear analysis/modeling
-Composite and mixed structures
*Other:
-Monitoring
-Aesthetics of concrete structures
-Other concrete related topics