Surface Plasmon Resonance-enhanced photocatalytic water-splitting for improved visible-light-driven H2 generation using Ag-modified twin crystal Cd0.5Zn0.5S photocatalysts

IF 3.4 3区 化学 Q2 CHEMISTRY, PHYSICAL
Mohammed Alfatih Hamid , Yasar Zengin , Ismail Boz
{"title":"Surface Plasmon Resonance-enhanced photocatalytic water-splitting for improved visible-light-driven H2 generation using Ag-modified twin crystal Cd0.5Zn0.5S photocatalysts","authors":"Mohammed Alfatih Hamid ,&nbsp;Yasar Zengin ,&nbsp;Ismail Boz","doi":"10.1016/j.catcom.2024.106841","DOIUrl":null,"url":null,"abstract":"<div><p>Photocatalytic hydrogen generation is a viable option among strategies to mitigate the energy crisis. This study investigates visible-light-driven H<sub>2</sub> generation using Ag-doped twin crystal Cd<sub>x</sub>Zn<sub>1-x</sub>S photocatalysts synthesized through a solvothermal process. Ag nanoparticles induce Surface Plasmon Resonance (SPR), enhancing photo-response. Twin crystal 1 wt% Ag-doped Cd<sub>0.5</sub>Zn<sub>0.5</sub>S photocatalyst exhibits significant H<sub>2</sub> evolution at 2458 μmol/g<sub>cat</sub>.h under visible light. Enhanced performance is attributed to dual-function Ag nanoparticles: SPR-enhanced light absorption, efficient electron transfer to the Cd<sub>0.5</sub>Zn<sub>0.5</sub>S conduction band, and the twin crystal structure facilitating electron-hole pair separation. Emphasis on optimal Ag loading and the crucial role of SPR in elevating photocatalyst efficiency.</p></div>","PeriodicalId":263,"journal":{"name":"Catalysis Communications","volume":"187 ","pages":"Article 106841"},"PeriodicalIF":3.4000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1566736724000013/pdfft?md5=cc9056ee1a90562d85ef268d45c1f8b5&pid=1-s2.0-S1566736724000013-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566736724000013","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Photocatalytic hydrogen generation is a viable option among strategies to mitigate the energy crisis. This study investigates visible-light-driven H2 generation using Ag-doped twin crystal CdxZn1-xS photocatalysts synthesized through a solvothermal process. Ag nanoparticles induce Surface Plasmon Resonance (SPR), enhancing photo-response. Twin crystal 1 wt% Ag-doped Cd0.5Zn0.5S photocatalyst exhibits significant H2 evolution at 2458 μmol/gcat.h under visible light. Enhanced performance is attributed to dual-function Ag nanoparticles: SPR-enhanced light absorption, efficient electron transfer to the Cd0.5Zn0.5S conduction band, and the twin crystal structure facilitating electron-hole pair separation. Emphasis on optimal Ag loading and the crucial role of SPR in elevating photocatalyst efficiency.

Abstract Image

Abstract Image

利用银改性孪晶 Cd0.5Zn0.5S 实现表面等离子共振增强型光催化水分离,从而提高可见光驱动的 H2 生成率
光催化制氢是缓解能源危机的一种可行方法。本研究采用溶热法合成的掺银双晶 CdxZn1-xS 光催化剂,研究了可见光驱动的氢气生成。银纳米粒子可诱导表面等离子体共振(SPR),从而增强光响应。在可见光下,掺杂 1 wt% Ag 的双晶 Cd0.5Zn0.5S 光催化剂在 2458 μmol/gcat.h 的条件下表现出显著的 H2 演化能力。性能的增强归功于具有双重功能的 Ag 纳米粒子:SPR 增强的光吸收、向 Cd0.5Zn0.5S 传导带的高效电子转移以及有利于电子-空穴对分离的孪晶结构。重点是最佳的银负载和 SPR 在提高光催化剂效率方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis Communications
Catalysis Communications 化学-物理化学
CiteScore
6.20
自引率
2.70%
发文量
183
审稿时长
46 days
期刊介绍: Catalysis Communications aims to provide rapid publication of significant, novel, and timely research results homogeneous, heterogeneous, and enzymatic catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信