Prediction of wellbore sand production potential from analysis of petrophysical data coupled with field stress: a case study from the Shah-Deniz gas field (Caspian Sea Basin)
Ali Gholami Vijouyeh, Mohammad Hassanpour Sedghi, David A. Wood
{"title":"Prediction of wellbore sand production potential from analysis of petrophysical data coupled with field stress: a case study from the Shah-Deniz gas field (Caspian Sea Basin)","authors":"Ali Gholami Vijouyeh, Mohammad Hassanpour Sedghi, David A. Wood","doi":"10.1007/s13202-023-01738-8","DOIUrl":null,"url":null,"abstract":"<p>Identifying the optimal azimuth and inclination for wellbore drilling in sandy formations can be considered a valuable aid in reducing sand production risks, lost time, and decreasing drilling costs in the petroleum industry. Therefore, a numerical systematic approach was provided to predict sand production in wellbore SDX-5, drilled in a deep-water sandstone reservoir in the Shah-Deniz gas field (South Caspian Basin), which has never been done previously. Additionally, this systematic approach uses geomechanical and geodynamical criteria, along with petrophysical information (density and sonic log) and tectonic characteristics of the study area, which are influenced by the active tectonic stresses of the Apsheron-Balkhan zone. The subsurface data sources employed are more eco-friendly, available, and continuous than experimental tests. The computations conducted achieved azimuth, inclination, polar, and depth profile plots for the Lower Balakhany Formation. The calculations reveal that the optimum azimuth for the wellbore drilling trajectories is parallel to SHmax and oblique drilling to near horizontal is the result of optimum inclination. Polar plots showed optimum azimuth, inclination, and effect of wellbore trajectory on critical collapse pressure and collapse drawdown pressure with pressure values simultaneously, which identify safer alternatives for achieving higher petroleum production rates without sanding. Depth profile plots provide a simultaneous overview of the values of critical collapse pressure, critical sanding pressure for instantaneous drawdown, and optimum wellbore production pressure during drilling and production operations. Moreover, optimum reservoir fluid production (maximum discharge) rates can be identified and imposed as upper limits to prevent sand production.</p>","PeriodicalId":16723,"journal":{"name":"Journal of Petroleum Exploration and Production Technology","volume":"15 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Exploration and Production Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13202-023-01738-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Identifying the optimal azimuth and inclination for wellbore drilling in sandy formations can be considered a valuable aid in reducing sand production risks, lost time, and decreasing drilling costs in the petroleum industry. Therefore, a numerical systematic approach was provided to predict sand production in wellbore SDX-5, drilled in a deep-water sandstone reservoir in the Shah-Deniz gas field (South Caspian Basin), which has never been done previously. Additionally, this systematic approach uses geomechanical and geodynamical criteria, along with petrophysical information (density and sonic log) and tectonic characteristics of the study area, which are influenced by the active tectonic stresses of the Apsheron-Balkhan zone. The subsurface data sources employed are more eco-friendly, available, and continuous than experimental tests. The computations conducted achieved azimuth, inclination, polar, and depth profile plots for the Lower Balakhany Formation. The calculations reveal that the optimum azimuth for the wellbore drilling trajectories is parallel to SHmax and oblique drilling to near horizontal is the result of optimum inclination. Polar plots showed optimum azimuth, inclination, and effect of wellbore trajectory on critical collapse pressure and collapse drawdown pressure with pressure values simultaneously, which identify safer alternatives for achieving higher petroleum production rates without sanding. Depth profile plots provide a simultaneous overview of the values of critical collapse pressure, critical sanding pressure for instantaneous drawdown, and optimum wellbore production pressure during drilling and production operations. Moreover, optimum reservoir fluid production (maximum discharge) rates can be identified and imposed as upper limits to prevent sand production.
期刊介绍:
The Journal of Petroleum Exploration and Production Technology is an international open access journal that publishes original and review articles as well as book reviews on leading edge studies in the field of petroleum engineering, petroleum geology and exploration geophysics and the implementation of related technologies to the development and management of oil and gas reservoirs from their discovery through their entire production cycle.
Focusing on:
Reservoir characterization and modeling
Unconventional oil and gas reservoirs
Geophysics: Acquisition and near surface
Geophysics Modeling and Imaging
Geophysics: Interpretation
Geophysics: Processing
Production Engineering
Formation Evaluation
Reservoir Management
Petroleum Geology
Enhanced Recovery
Geomechanics
Drilling
Completions
The Journal of Petroleum Exploration and Production Technology is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies