Identifiability and singular locus of secant varieties to Grassmannians

IF 0.7 2区 数学 Q2 MATHEMATICS
Vincenzo Galgano, Reynaldo Staffolani
{"title":"Identifiability and singular locus of secant varieties to Grassmannians","authors":"Vincenzo Galgano, Reynaldo Staffolani","doi":"10.1007/s13348-023-00429-1","DOIUrl":null,"url":null,"abstract":"<p>Secant varieties are among the main protagonists in tensor decomposition, whose study involves both pure and applied mathematic areas. Grassmannians are the building blocks for skewsymmetric tensors. Although they are ubiquitous in the literature, the geometry of their secant varieties is not completely understood. In this work we determine the singular locus of the secant variety of lines to a Grassmannian <i>Gr</i>(<i>k</i>, <i>V</i>) using its structure as <span>\\({{\\,\\textrm{SL}\\,}}(V)\\)</span>-variety. We solve the problems of identifiability and tangential-identifiability of points in the secant variety: as a consequence, we also determine the second Terracini locus to a Grassmannian.</p>","PeriodicalId":50993,"journal":{"name":"Collectanea Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collectanea Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13348-023-00429-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Secant varieties are among the main protagonists in tensor decomposition, whose study involves both pure and applied mathematic areas. Grassmannians are the building blocks for skewsymmetric tensors. Although they are ubiquitous in the literature, the geometry of their secant varieties is not completely understood. In this work we determine the singular locus of the secant variety of lines to a Grassmannian Gr(kV) using its structure as \({{\,\textrm{SL}\,}}(V)\)-variety. We solve the problems of identifiability and tangential-identifiability of points in the secant variety: as a consequence, we also determine the second Terracini locus to a Grassmannian.

格拉斯曼矢切变种的可识别性和奇异位点
张量分解涉及纯数学和应用数学两个领域。格拉斯曼是偏对称张量的基石。尽管它们在文献中无处不在,但人们对其矢量变体的几何结构并不完全了解。在这项工作中,我们利用格拉斯曼Gr(k, V)的({{\,\textrm{SL}\,}(V)\)-variety结构确定了线到格拉斯曼Gr(k, V)的secant varieties的奇点位置。我们解决了secant variety中点的可识别性和切向可识别性问题:因此,我们也确定了格拉斯曼的第二个Terracini位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Collectanea Mathematica
Collectanea Mathematica 数学-数学
CiteScore
2.70
自引率
9.10%
发文量
36
审稿时长
>12 weeks
期刊介绍: Collectanea Mathematica publishes original research peer reviewed papers of high quality in all fields of pure and applied mathematics. It is an international journal of the University of Barcelona and the oldest mathematical journal in Spain. It was founded in 1948 by José M. Orts. Previously self-published by the Institut de Matemàtica (IMUB) of the Universitat de Barcelona, as of 2011 it is published by Springer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信