Nonparametric intercept regularization for insurance claim frequency regression models

IF 1.5 Q3 BUSINESS, FINANCE
Gee Y. Lee, Himchan Jeong
{"title":"Nonparametric intercept regularization for insurance claim frequency regression models","authors":"Gee Y. Lee, Himchan Jeong","doi":"10.1017/s1748499523000271","DOIUrl":null,"url":null,"abstract":"In a subgroup analysis for an actuarial problem, the goal is for the investigator to classify the policyholders into unique groups, where the claims experience within each group are made as homogenous as possible. In this paper, we illustrate how the alternating direction method of multipliers (ADMM) approach for subgroup analysis can be modified so that it can be more easily incorporated into an insurance claims analysis. We present an approach to penalize adjacent coefficients only and show how the algorithm can be implemented for fast estimation of the parameters. We present three different cases of the model, depending on the level of dependence among the different coverage groups within the data. In addition, we provide an interpretation of the credibility problem using both random effects and fixed effects, where the fixed effects approach corresponds to the ADMM approach to subgroup analysis, while the random effects approach represents the classic Bayesian approach. In an empirical study, we demonstrate how these approaches can be applied to real data using the Wisconsin Local Government Property Insurance Fund data. Our results show that the presented approach to subgroup analysis could provide a classification of the policyholders that improves the prediction accuracy of the claim frequencies in case other classifying variables are unavailable in the data.","PeriodicalId":44135,"journal":{"name":"Annals of Actuarial Science","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Actuarial Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s1748499523000271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

In a subgroup analysis for an actuarial problem, the goal is for the investigator to classify the policyholders into unique groups, where the claims experience within each group are made as homogenous as possible. In this paper, we illustrate how the alternating direction method of multipliers (ADMM) approach for subgroup analysis can be modified so that it can be more easily incorporated into an insurance claims analysis. We present an approach to penalize adjacent coefficients only and show how the algorithm can be implemented for fast estimation of the parameters. We present three different cases of the model, depending on the level of dependence among the different coverage groups within the data. In addition, we provide an interpretation of the credibility problem using both random effects and fixed effects, where the fixed effects approach corresponds to the ADMM approach to subgroup analysis, while the random effects approach represents the classic Bayesian approach. In an empirical study, we demonstrate how these approaches can be applied to real data using the Wisconsin Local Government Property Insurance Fund data. Our results show that the presented approach to subgroup analysis could provide a classification of the policyholders that improves the prediction accuracy of the claim frequencies in case other classifying variables are unavailable in the data.
保险索赔频率回归模型的非参数截距正则化
在对精算问题进行分组分析时,调查人员的目标是将投保人划分为不同的组别,并尽可能使每个组别内的理赔经验相同。在本文中,我们将说明如何对用于分组分析的乘数交替方向法(ADMM)进行修改,使其能够更容易地融入保险理赔分析中。我们提出了一种只对相邻系数进行惩罚的方法,并展示了如何实施该算法以快速估计参数。根据数据中不同保险组之间的依赖程度,我们介绍了该模型的三种不同情况。此外,我们还利用随机效应和固定效应对可信度问题进行了解释,其中固定效应方法对应于亚组分析的 ADMM 方法,而随机效应方法则代表了经典的贝叶斯方法。在一项实证研究中,我们利用威斯康星州地方政府财产保险基金的数据演示了如何将这些方法应用于真实数据。我们的研究结果表明,在数据中没有其他分类变量的情况下,所提出的分组分析方法可以对投保人进行分类,从而提高索赔频率预测的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
5.90%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信