{"title":"Dynamical Analysis of a Delayed Stochastic Lotka–Volterra Competitive Model in Polluted Aquatic Environments","authors":"Quan Wang, Li Zu","doi":"10.1007/s12346-023-00925-6","DOIUrl":null,"url":null,"abstract":"<p>A stochastic toxin-mediated Lotka–Volterra competitive model with time-delay is formulated. Our primary goal is to study the impacts of white noise, environmental toxins and time-delay on population dynamics of the model. To begin with, we demonstrate that there exists a globally positive solution with the aid of constructing Lyapunov function. Then we discuss the uniform boundedness of the pth moment and invariant measure for the solution by Krylov–Bogoliubov theorem. Moreover, persistence and extinction are significant subjects in the study of biological population systems, so we further derive the sufficient conditions for weak persistence, persistence in time average and extinction of the solution, which can serve as a theoretical basis for protecting the diversity of aquatic organisms. In addition, using exponential martingale inequality and Borel–Cantelli lemma, the asymptotic pathwise estimation of system is given. Notably, we creatively explore the probability density function of the converted model, which is based on addressing the corresponding Fokker–Planck equation. In the end, utilizing computer simulation to illuminate the dominating results and reveal the influences of the above disturbances on the aquatic ecological population, such as high concentration of toxins can result in extinction, but a certain level of toxins can promote the persistence of highly resistant species.\n</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"2 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-023-00925-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A stochastic toxin-mediated Lotka–Volterra competitive model with time-delay is formulated. Our primary goal is to study the impacts of white noise, environmental toxins and time-delay on population dynamics of the model. To begin with, we demonstrate that there exists a globally positive solution with the aid of constructing Lyapunov function. Then we discuss the uniform boundedness of the pth moment and invariant measure for the solution by Krylov–Bogoliubov theorem. Moreover, persistence and extinction are significant subjects in the study of biological population systems, so we further derive the sufficient conditions for weak persistence, persistence in time average and extinction of the solution, which can serve as a theoretical basis for protecting the diversity of aquatic organisms. In addition, using exponential martingale inequality and Borel–Cantelli lemma, the asymptotic pathwise estimation of system is given. Notably, we creatively explore the probability density function of the converted model, which is based on addressing the corresponding Fokker–Planck equation. In the end, utilizing computer simulation to illuminate the dominating results and reveal the influences of the above disturbances on the aquatic ecological population, such as high concentration of toxins can result in extinction, but a certain level of toxins can promote the persistence of highly resistant species.
期刊介绍:
Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.