Porous Elastic Soils with Fluid Saturation and Boundary Dissipation of Fractional Derivative Type

IF 1.9 3区 数学 Q1 MATHEMATICS
Carlos Nonato, Abbes Benaissa, Anderson Ramos, Carlos Raposo, Mirelson Freitas
{"title":"Porous Elastic Soils with Fluid Saturation and Boundary Dissipation of Fractional Derivative Type","authors":"Carlos Nonato, Abbes Benaissa, Anderson Ramos, Carlos Raposo, Mirelson Freitas","doi":"10.1007/s12346-023-00937-2","DOIUrl":null,"url":null,"abstract":"<p>This paper deals with a one-dimensional system in the linear isothermal theory of swelling porous elastic soils subject to fractional derivative-type boundary damping. We apply the semigroup theory. We prove well-posedness by the Lumer–Phillips theorem. We show the lack of exponential stability and strong stability is proved by using general criteria due to Arendt–Batty. Polynomial stability result is obtained by applying the Borichev–Tomilov theorem.</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"36 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-023-00937-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with a one-dimensional system in the linear isothermal theory of swelling porous elastic soils subject to fractional derivative-type boundary damping. We apply the semigroup theory. We prove well-posedness by the Lumer–Phillips theorem. We show the lack of exponential stability and strong stability is proved by using general criteria due to Arendt–Batty. Polynomial stability result is obtained by applying the Borichev–Tomilov theorem.

具有流体饱和和边界耗散的分数微分型多孔弹性土
本文论述了膨胀多孔弹性土线性等温理论中的一维系统,该系统受分数导数型边界阻尼的影响。我们应用了半群理论。我们通过 Lumer-Phillips 定理证明了问题的可解决性。我们利用阿伦特-巴蒂(Arendt-Batty)提出的一般标准证明了缺乏指数稳定性和强稳定性。通过应用 Borichev-Tomilov 定理,我们获得了多项式稳定性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Qualitative Theory of Dynamical Systems
Qualitative Theory of Dynamical Systems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
14.30%
发文量
130
期刊介绍: Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信