A. Mamageishvili, Mahimna Kelkar, Jan Christoph Schlegel, E. Felten
{"title":"Buying Time: Latency Racing vs. Bidding for Transaction Ordering","authors":"A. Mamageishvili, Mahimna Kelkar, Jan Christoph Schlegel, E. Felten","doi":"10.4230/LIPIcs.AFT.2023.23","DOIUrl":null,"url":null,"abstract":"We design TimeBoost: a practical transaction ordering policy for rollup sequencers that takes into account both transaction timestamps and bids; it works by creating a score from timestamps and bids, and orders transactions based on this score. TimeBoost is transaction-data-independent (i.e., can work with encrypted transactions) and supports low transaction finalization times similar to a first-come first-serve (FCFS or pure-latency) ordering policy. At the same time, it avoids the inefficient latency competition created by an FCFS policy. It further satisfies useful economic properties of first-price auctions that come with a pure-bidding policy. We show through rigorous economic analyses how TimeBoost allows players to compete on arbitrage opportunities in a way that results in better guarantees compared to both pure-latency and pure-bidding approaches.","PeriodicalId":393632,"journal":{"name":"Conference on Advances in Financial Technologies","volume":"42 1","pages":"23:1-23:22"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Advances in Financial Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.AFT.2023.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We design TimeBoost: a practical transaction ordering policy for rollup sequencers that takes into account both transaction timestamps and bids; it works by creating a score from timestamps and bids, and orders transactions based on this score. TimeBoost is transaction-data-independent (i.e., can work with encrypted transactions) and supports low transaction finalization times similar to a first-come first-serve (FCFS or pure-latency) ordering policy. At the same time, it avoids the inefficient latency competition created by an FCFS policy. It further satisfies useful economic properties of first-price auctions that come with a pure-bidding policy. We show through rigorous economic analyses how TimeBoost allows players to compete on arbitrage opportunities in a way that results in better guarantees compared to both pure-latency and pure-bidding approaches.