Ant Colony Optimization for Resistor Color Code Detection

S. Wibawanto, K. Kirana, Hani Ramadhan
{"title":"Ant Colony Optimization for Resistor Color Code Detection","authors":"S. Wibawanto, K. Kirana, Hani Ramadhan","doi":"10.17977/um018v6i12023p15-23","DOIUrl":null,"url":null,"abstract":"In the early stages of learning resistors, introducing color-based values is needed. Moreover, some combinations require a resistor trip analysis to identify. Unfortunately, a resistor body color is considered a local solution, which often confuses resistor coloration. Ant Colony Optimization (ACO) is a heuristic algorithm that can recognize problems with traveling a group of ants. ACO is proposed to select commercial matrix values to be computed without preventing local solutions. In this study, each explores the matrix based on pheromones and heuristic information to generate local solutions. Global solutions are selected based on their high degree of similarity with other local solutions. The first stage of testing focuses on exploring variations of parameter values. Applying the best parameters resulted in 85% accuracy and 43 seconds for 20 resistor images. This method is expected to prevent local solutions without wasteful computation of the matrix.","PeriodicalId":52868,"journal":{"name":"Knowledge Engineering and Data Science","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge Engineering and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17977/um018v6i12023p15-23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the early stages of learning resistors, introducing color-based values is needed. Moreover, some combinations require a resistor trip analysis to identify. Unfortunately, a resistor body color is considered a local solution, which often confuses resistor coloration. Ant Colony Optimization (ACO) is a heuristic algorithm that can recognize problems with traveling a group of ants. ACO is proposed to select commercial matrix values to be computed without preventing local solutions. In this study, each explores the matrix based on pheromones and heuristic information to generate local solutions. Global solutions are selected based on their high degree of similarity with other local solutions. The first stage of testing focuses on exploring variations of parameter values. Applying the best parameters resulted in 85% accuracy and 43 seconds for 20 resistor images. This method is expected to prevent local solutions without wasteful computation of the matrix.
用于电阻器色码检测的蚁群优化技术
在学习电阻器的早期阶段,需要引入基于颜色的数值。此外,有些组合需要进行电阻行程分析才能识别。遗憾的是,电阻体颜色被认为是一种局部解决方案,这往往会混淆电阻着色。蚁群优化(ACO)是一种启发式算法,可以通过一群蚂蚁的旅行来识别问题。ACO 的提出是为了在不妨碍局部解的情况下选择要计算的商业矩阵值。在这项研究中,每只蚂蚁根据信息素和启发式信息探索矩阵,生成局部解决方案。全局解决方案根据其与其他局部解决方案的高度相似性进行选择。第一阶段的测试重点是探索参数值的变化。应用最佳参数后,20 个电阻器图像的准确率达到 85%,耗时 43 秒。这种方法有望在不浪费矩阵计算量的情况下防止出现局部解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
4
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信