DocumentNet: Bridging the Data Gap in Document Pre-training

Lijun Yu, Jin Miao, Xiaoyu Sun, Jiayi Chen, A. Hauptmann, H. Dai, Wei Wei
{"title":"DocumentNet: Bridging the Data Gap in Document Pre-training","authors":"Lijun Yu, Jin Miao, Xiaoyu Sun, Jiayi Chen, A. Hauptmann, H. Dai, Wei Wei","doi":"10.18653/v1/2023.emnlp-industry.66","DOIUrl":null,"url":null,"abstract":"Document understanding tasks, in particular, Visually-rich Document Entity Retrieval (VDER), have gained significant attention in recent years thanks to their broad applications in enterprise AI. However, publicly available data have been scarce for these tasks due to strict privacy constraints and high annotation costs. To make things worse, the non-overlapping entity spaces from different datasets hinder the knowledge transfer between document types. In this paper, we propose a method to collect massive-scale and weakly labeled data from the web to benefit the training of VDER models. The collected dataset, named DocumentNet, does not depend on specific document types or entity sets, making it universally applicable to all VDER tasks. The current DocumentNet consists of 30M documents spanning nearly 400 document types organized in a four-level ontology. Experiments on a set of broadly adopted VDER tasks show significant improvements when DocumentNet is incorporated into the pre-training for both classic and few-shot learning settings. With the recent emergence of large language models (LLMs), DocumentNet provides a large data source to extend their multi-modal capabilities for VDER.","PeriodicalId":505350,"journal":{"name":"Conference on Empirical Methods in Natural Language Processing","volume":"16 1","pages":"707-722"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Empirical Methods in Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2023.emnlp-industry.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Document understanding tasks, in particular, Visually-rich Document Entity Retrieval (VDER), have gained significant attention in recent years thanks to their broad applications in enterprise AI. However, publicly available data have been scarce for these tasks due to strict privacy constraints and high annotation costs. To make things worse, the non-overlapping entity spaces from different datasets hinder the knowledge transfer between document types. In this paper, we propose a method to collect massive-scale and weakly labeled data from the web to benefit the training of VDER models. The collected dataset, named DocumentNet, does not depend on specific document types or entity sets, making it universally applicable to all VDER tasks. The current DocumentNet consists of 30M documents spanning nearly 400 document types organized in a four-level ontology. Experiments on a set of broadly adopted VDER tasks show significant improvements when DocumentNet is incorporated into the pre-training for both classic and few-shot learning settings. With the recent emergence of large language models (LLMs), DocumentNet provides a large data source to extend their multi-modal capabilities for VDER.
文档网:弥合文档预培训中的数据鸿沟
近年来,文档理解任务,特别是视觉丰富文档实体检索(VDER),由于在企业人工智能中的广泛应用而备受关注。然而,由于严格的隐私限制和高昂的注释成本,这些任务的公开数据一直很少。更糟糕的是,来自不同数据集的非重叠实体空间阻碍了文档类型之间的知识转移。在本文中,我们提出了一种从网络中收集大规模弱标注数据的方法,以利于 VDER 模型的训练。收集到的数据集被命名为 DocumentNet,它不依赖于特定的文档类型或实体集,因此普遍适用于所有 VDER 任务。当前的 DocumentNet 包含 3,000 万份文档,涵盖近 400 种文档类型,由一个四级本体组织。在一组广泛采用的 VDER 任务上进行的实验表明,将 DocumentNet 纳入经典和少量学习设置的预训练时,VDER 任务都有显著改善。随着大型语言模型(LLMs)的不断涌现,DocumentNet 提供了一个大型数据源,可以扩展它们在 VDER 方面的多模态能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信