The Havriliak–Negami and Jurlewicz–Weron–Stanislavsky relaxation models revisited: memory functions based study

K. Górska, A. Horzela, K. Penson
{"title":"The Havriliak–Negami and Jurlewicz–Weron–Stanislavsky relaxation models revisited: memory functions based study","authors":"K. Górska, A. Horzela, K. Penson","doi":"10.1088/1751-8121/acdf9b","DOIUrl":null,"url":null,"abstract":"We provide a review of theoretical results concerning the Havriliak–Negami (HN) and the Jurlewicz–Weron–Stanislavsky (JWS) dielectric relaxation models. We derive explicit forms of functions characterizing relaxation phenomena in the time domain—the relaxation, response and probability distribution functions. We also explain how to construct and solve relevant evolution equations within these models. These equations are usually solved by using the Schwinger parametrization and the integral transforms. Instead, in this work we replace it by the powerful Efros theorem. That allows one to relate physically admissible solutions to the memory-dependent evolution equations with phenomenologically known spectral functions and, from the other side, with the subordination mechanism emerging from a stochastic analysis of processes underpinning considered relaxation phenomena. Our approach is based on a systematic analysis of the memory-dependent evolution equations. It exploits methods of integral transforms, operational calculus and special functions theory with the completely monotone and Bernstein functions. Merging analytic and stochastic methods enables us to give a complete classification of the standard functions used to describe the large class of the relaxation phenomena and to explain their properties.","PeriodicalId":502730,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/acdf9b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We provide a review of theoretical results concerning the Havriliak–Negami (HN) and the Jurlewicz–Weron–Stanislavsky (JWS) dielectric relaxation models. We derive explicit forms of functions characterizing relaxation phenomena in the time domain—the relaxation, response and probability distribution functions. We also explain how to construct and solve relevant evolution equations within these models. These equations are usually solved by using the Schwinger parametrization and the integral transforms. Instead, in this work we replace it by the powerful Efros theorem. That allows one to relate physically admissible solutions to the memory-dependent evolution equations with phenomenologically known spectral functions and, from the other side, with the subordination mechanism emerging from a stochastic analysis of processes underpinning considered relaxation phenomena. Our approach is based on a systematic analysis of the memory-dependent evolution equations. It exploits methods of integral transforms, operational calculus and special functions theory with the completely monotone and Bernstein functions. Merging analytic and stochastic methods enables us to give a complete classification of the standard functions used to describe the large class of the relaxation phenomena and to explain their properties.
哈夫里利亚克-涅伽米和尤尔列维茨-韦龙-斯坦尼斯拉夫斯基松弛模型再探讨:基于记忆功能的研究
我们回顾了有关 Havriliak-Negami (HN) 和 Jurlewicz-Weron-Stanislavsky (JWS) 介电松弛模型的理论成果。我们推导出表征时域松弛现象的函数的明确形式--松弛函数、响应函数和概率分布函数。我们还解释了如何在这些模型中构建和求解相关的演化方程。这些方程通常通过施温格参数化和积分变换来求解。而在本研究中,我们用强大的埃弗罗斯定理取而代之。这样,我们就能将依赖于记忆的演化方程的物理可接受解与现象学上已知的谱函数联系起来,并从另一方面与对所考虑的弛豫现象的基础过程进行随机分析后产生的从属机制联系起来。我们的方法基于对依赖记忆的演化方程的系统分析。它利用了积分变换、运算微积分和特殊函数理论与完全单调函数和伯恩斯坦函数的方法。分析方法和随机方法的结合使我们能够对用于描述大量弛豫现象的标准函数进行完整分类,并解释它们的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信