Eavesdropper localization for quantum and classical channels via nonlinear scattering

A. Popp, F. Sedlmeir, B. Stiller, C. Marquardt
{"title":"Eavesdropper localization for quantum and classical channels via nonlinear scattering","authors":"A. Popp, F. Sedlmeir, B. Stiller, C. Marquardt","doi":"10.1364/opticaq.502944","DOIUrl":null,"url":null,"abstract":"Optical fiber networks are part of important critical infrastructure and known to be prone to eavesdropping attacks. Hence cryptographic methods have to be used to protect communication. Quantum key distribution (QKD), at its core, offers information theoretical security based on the laws of physics. In deployments one has to take into account practical security and resilience. The latter includes the localization of a possible eavesdropper after an anomaly has been detected by the QKD system to avoid denial-of-service. Here, we present a novel approach to eavesdropper location that can be employed in quantum as well as classical channels using stimulated Brillouin scattering. The tight localization of the acoustic wave inside the fiber channel using correlated pump and probe waves allows to discover the coordinates of a potential threat within centimeters. We demonstrate that our approach outperforms conventional OTDR in the task of localizing an evanescent outcoupling of 1% with cm precision inside standard optical fibers. The system is furthermore able to clearly distinguish commercially available standard SMF28 from different manufacturers, paving the way for fingerprinted fibers in high security environments.","PeriodicalId":501828,"journal":{"name":"Optica Quantum","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/opticaq.502944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Optical fiber networks are part of important critical infrastructure and known to be prone to eavesdropping attacks. Hence cryptographic methods have to be used to protect communication. Quantum key distribution (QKD), at its core, offers information theoretical security based on the laws of physics. In deployments one has to take into account practical security and resilience. The latter includes the localization of a possible eavesdropper after an anomaly has been detected by the QKD system to avoid denial-of-service. Here, we present a novel approach to eavesdropper location that can be employed in quantum as well as classical channels using stimulated Brillouin scattering. The tight localization of the acoustic wave inside the fiber channel using correlated pump and probe waves allows to discover the coordinates of a potential threat within centimeters. We demonstrate that our approach outperforms conventional OTDR in the task of localizing an evanescent outcoupling of 1% with cm precision inside standard optical fibers. The system is furthermore able to clearly distinguish commercially available standard SMF28 from different manufacturers, paving the way for fingerprinted fibers in high security environments.
通过非线性散射实现量子和经典信道的窃听器定位
光纤网络是重要关键基础设施的一部分,容易受到窃听攻击。因此,必须使用加密方法来保护通信。量子密钥分发(QKD)的核心是提供基于物理定律的信息理论安全性。在部署过程中,我们必须考虑到实际安全性和弹性。后者包括在 QKD 系统检测到异常后定位可能的窃听者,以避免拒绝服务。在这里,我们提出了一种新的窃听者定位方法,这种方法可以在量子和经典信道中使用受激布里渊散射。利用相关的泵波和探针波对光纤通道内的声波进行紧密定位,可以在几厘米内发现潜在威胁的坐标。我们证明,在标准光纤内以厘米为单位精确定位 1%的蒸发外耦合时,我们的方法优于传统的 OTDR。此外,该系统还能清楚地区分来自不同制造商的市售标准 SMF28,为高安全性环境中的指纹光纤铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信