Computer Vision-Based Fish Feed Detection and Quantification System

Riyandani Riyandani, Indra Jaya, Ayi Rahmat
{"title":"Computer Vision-Based Fish Feed Detection and Quantification System","authors":"Riyandani Riyandani, Indra Jaya, Ayi Rahmat","doi":"10.30871/jagi.v7i1.5644","DOIUrl":null,"url":null,"abstract":"The development of the Automatic Feeder instrument and OAK-D camera has yielded positive results. The Automatic Feeder functions well, dispensing 30 grams of fish feed every 5 rotations of the stepper motor. The OAK-D camera records with sharp details, accurate colors, and good contrast, producing high-quality videos. The YOLOv5x detection model achieves an accuracy of 82%, precision of 80%, recall of 84%, mAP of 81.90%, and a training loss of 0.079144. This model can detect fish feed with high accuracy. The calculation of fish feed reveals different consumption patterns in the morning, afternoon, and evening. On average, the fish feed is depleted at the 25th minute across all time periods. The information from the graphs and tables can assist in optimizing the feeding process to avoid overfeeding.","PeriodicalId":503070,"journal":{"name":"Journal of Applied Geospatial Information","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Geospatial Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30871/jagi.v7i1.5644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The development of the Automatic Feeder instrument and OAK-D camera has yielded positive results. The Automatic Feeder functions well, dispensing 30 grams of fish feed every 5 rotations of the stepper motor. The OAK-D camera records with sharp details, accurate colors, and good contrast, producing high-quality videos. The YOLOv5x detection model achieves an accuracy of 82%, precision of 80%, recall of 84%, mAP of 81.90%, and a training loss of 0.079144. This model can detect fish feed with high accuracy. The calculation of fish feed reveals different consumption patterns in the morning, afternoon, and evening. On average, the fish feed is depleted at the 25th minute across all time periods. The information from the graphs and tables can assist in optimizing the feeding process to avoid overfeeding.
基于计算机视觉的鱼饲料检测和定量系统
自动喂食器和 OAK-D 摄像机的开发取得了积极成果。自动喂食器功能良好,步进电机每旋转 5 圈就能投放 30 克鱼饲料。OAK-D 摄像机拍摄的画面细节清晰、色彩准确、对比度高,能拍摄出高质量的视频。YOLOv5x 检测模型的准确率为 82%,精确率为 80%,召回率为 84%,mAP 为 81.90%,训练损失为 0.079144。该模型可以高精度地检测鱼饲料。对鱼饲料的计算显示了上午、下午和晚上不同的消耗模式。平均而言,鱼饲料在所有时间段的第 25 分钟消耗殆尽。图表中的信息有助于优化喂食过程,避免喂食过量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信