Evaluation of the Thermogravimetric Profile of Hybrid Cellulose Acetate Membranes using Machine Learning Approaches

Filipi França dos Santos, Kelly Cristine Da Silveira, Daniela Herdy Carrielo, Gesiane Mendonça Ferreira, Guilherme de Melo Baptista Domingues, Mônica Calixto de Andrade
{"title":"Evaluation of the Thermogravimetric Profile of Hybrid Cellulose Acetate Membranes using Machine Learning Approaches","authors":"Filipi França dos Santos, Kelly Cristine Da Silveira, Daniela Herdy Carrielo, Gesiane Mendonça Ferreira, Guilherme de Melo Baptista Domingues, Mônica Calixto de Andrade","doi":"10.14295/vetor.v33i1.15167","DOIUrl":null,"url":null,"abstract":"Thermogravimetric analysis (TGA) is a characterization technique routinely used in materials science. In this particular case, TGA determines the variation of weight with temperature. The thermogravimetric analysis of cellulose acetate (CA) hybrid membranes can provide similar results, despite their different chemical composition. The present study uses machine learning algorithms to correlate data from thermogravimetric analyses with variations in chemical composition. Experimental points relating to temperature and weight from these analyses were treated in different ways and used to estimate the composition of the membranes. The Extra-Trees Classifier, Random Forest, Decision Tree, and K-Nearest Neighbors (KNN) algorithms were applied to this data and then evaluated using a confusion and accuracy matrix. The decision tree-based algorithms demonstrated a superior capacity for estimating the composition, albeit with negligible disparities in the thermogravimetric profile. The Extra-Trees Classifier algorithm, in particular, stood out for its ability to estimate composition in all tests, achieving 90% accuracy.","PeriodicalId":258655,"journal":{"name":"VETOR - Revista de Ciências Exatas e Engenharias","volume":"217 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VETOR - Revista de Ciências Exatas e Engenharias","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14295/vetor.v33i1.15167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Thermogravimetric analysis (TGA) is a characterization technique routinely used in materials science. In this particular case, TGA determines the variation of weight with temperature. The thermogravimetric analysis of cellulose acetate (CA) hybrid membranes can provide similar results, despite their different chemical composition. The present study uses machine learning algorithms to correlate data from thermogravimetric analyses with variations in chemical composition. Experimental points relating to temperature and weight from these analyses were treated in different ways and used to estimate the composition of the membranes. The Extra-Trees Classifier, Random Forest, Decision Tree, and K-Nearest Neighbors (KNN) algorithms were applied to this data and then evaluated using a confusion and accuracy matrix. The decision tree-based algorithms demonstrated a superior capacity for estimating the composition, albeit with negligible disparities in the thermogravimetric profile. The Extra-Trees Classifier algorithm, in particular, stood out for its ability to estimate composition in all tests, achieving 90% accuracy.
利用机器学习方法评估混合醋酸纤维素膜的热重曲线
热重分析(TGA)是材料科学中常用的一种表征技术。在这种特殊情况下,TGA 可确定重量随温度的变化。尽管醋酸纤维素(CA)混合膜的化学成分不同,但它们的热重分析可以提供相似的结果。本研究使用机器学习算法将热重分析数据与化学成分变化联系起来。这些分析中与温度和重量相关的实验点以不同的方式处理,并用于估算膜的成分。对这些数据采用了树外分类器、随机森林、决策树和 K-近邻(KNN)算法,然后使用混淆和准确度矩阵进行评估。基于决策树的算法在估计成分方面表现出了卓越的能力,尽管热重曲线的差异可以忽略不计。特别是额外树分类器算法,在所有测试中都能出色地估计成分,准确率达到 90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信