Limit cycles obtained by perturbing a degenerate center

Nabil Rezaiki, A. Boulfoul
{"title":"Limit cycles obtained by perturbing a degenerate center","authors":"Nabil Rezaiki, A. Boulfoul","doi":"10.30538/psrp-oma2023.0124","DOIUrl":null,"url":null,"abstract":"This paper deals with the maximum number of limit cycles bifurcating from the degenerate centre \\[ \\dot{x}=-y(3x^2+y^2),\\: \\dot{y}=x(x^2-y^2), \\] when we perturb it inside a class of all homogeneous polynomial differential systems of degree \\(5\\). Using averaging theory of second order, we show that, at most, five limit cycles are produced from the periodic orbits surrounding the degenerate centre under quintic perturbation. In addition, we provide six examples that give rise to exactly \\(5, 4, 3, 2, 1\\) and \\(0\\) limit cycles.","PeriodicalId":52741,"journal":{"name":"Open Journal of Mathematical Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Journal of Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30538/psrp-oma2023.0124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with the maximum number of limit cycles bifurcating from the degenerate centre \[ \dot{x}=-y(3x^2+y^2),\: \dot{y}=x(x^2-y^2), \] when we perturb it inside a class of all homogeneous polynomial differential systems of degree \(5\). Using averaging theory of second order, we show that, at most, five limit cycles are produced from the periodic orbits surrounding the degenerate centre under quintic perturbation. In addition, we provide six examples that give rise to exactly \(5, 4, 3, 2, 1\) and \(0\) limit cycles.
通过扰动退化中心获得的极限循环
本文讨论当我们在一类度数为\(5\)的全同多项式微分系统内对其进行扰动时,从退化中心\[ \dot{x}=-y(3x^2+y^2),\: \dot{y}=x(x^2-y^2),\]分叉出来的极限循环的最大数量。利用二阶平均理论,我们证明在五阶扰动下,围绕退化中心的周期轨道最多会产生五个极限循环。此外,我们还提供了六个例子,它们恰好产生了\(5, 4, 3, 2, 1\) 和\(0\) 极限循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
10
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信