{"title":"The local fractional natural transform and its applications to differential equations on Cantor sets","authors":"D. Ziane, M. Cherif","doi":"10.30538/psrp-oma2023.0119","DOIUrl":null,"url":null,"abstract":"The work that we have done in this paper is the coupling method between the local fractional derivative and the Natural transform (we can call it the local fractional Natural transform), where we have provided some essential results and properties. We have applied this method to some linear local fractional differential equations on Cantor sets to get nondifferentiable solutions. The results show this transform’s effectiveness when we combine it with this operator.","PeriodicalId":52741,"journal":{"name":"Open Journal of Mathematical Analysis","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Journal of Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30538/psrp-oma2023.0119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The work that we have done in this paper is the coupling method between the local fractional derivative and the Natural transform (we can call it the local fractional Natural transform), where we have provided some essential results and properties. We have applied this method to some linear local fractional differential equations on Cantor sets to get nondifferentiable solutions. The results show this transform’s effectiveness when we combine it with this operator.