Peramalan Stok Barang Percetakan dan ATK Menggunakan Single Moving Average

Heni Sulastri, Gilang Saeful Anwar, Euis Nur Fitriani Dewi
{"title":"Peramalan Stok Barang Percetakan dan ATK Menggunakan Single Moving Average","authors":"Heni Sulastri, Gilang Saeful Anwar, Euis Nur Fitriani Dewi","doi":"10.30872/jurti.v7i1.11876","DOIUrl":null,"url":null,"abstract":"Setiap badan usaha yang berorientasi pada penjualan produk mayoritas memerlukan informasi tentang produk yang dijualnya, termasuk informasi stok barang. Setiap usaha memiliki caranya tersendiri untuk mengelola data tersebut. Masalah yang biasanya dihadapi adalah ketika terlalu banyak menyiapkan stok banyak untuk produk yang pada periode tertentu sedang tidak banyak peminatnya dan sebaliknya menyiapkan stok seadanya untuk produk yang pada periode tertentu sedang banyak yang membutuhkan. Penumpukan stok produk menyebabkan produk tersebut bisa rusak karena termakan waktu dan kekurangan stok produk menyebabkan kepercayaan konsumen menurun dan memilih membeli produk tersebut di tempat lain. Salah satu solusi dari masalah tersebut adalah meramalkan stok produk yang harus disediakan pada periode berikutnya. Metode peramalan yang dipilih pada penelitian ini adalah Single Moving Average (SMA) yang dihitung nilai error-nya menggunakan beberapa matriks evaluasi diantaranya Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), dan Mean Absolute Percentage Error (MAPE). Penelitian ini bertujuan untuk meramalkan penjualan di periode selanjutnya menggunakan data penjualan pada periode sebelumnya. Hasil peramalan SMA menggunakan orde 3 pada bulan Juli 2023 yaitu 1359,3333 dengan perhitungan MAE sebesar 303,0667, MSE sebesar 153873,1, RMSE sebesar 392,2666, dan MAPE sebesar 39,0342% yang masuk ke dalam kategori wajar.","PeriodicalId":102981,"journal":{"name":"Jurnal Rekayasa Teknologi Informasi (JURTI)","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Rekayasa Teknologi Informasi (JURTI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30872/jurti.v7i1.11876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Setiap badan usaha yang berorientasi pada penjualan produk mayoritas memerlukan informasi tentang produk yang dijualnya, termasuk informasi stok barang. Setiap usaha memiliki caranya tersendiri untuk mengelola data tersebut. Masalah yang biasanya dihadapi adalah ketika terlalu banyak menyiapkan stok banyak untuk produk yang pada periode tertentu sedang tidak banyak peminatnya dan sebaliknya menyiapkan stok seadanya untuk produk yang pada periode tertentu sedang banyak yang membutuhkan. Penumpukan stok produk menyebabkan produk tersebut bisa rusak karena termakan waktu dan kekurangan stok produk menyebabkan kepercayaan konsumen menurun dan memilih membeli produk tersebut di tempat lain. Salah satu solusi dari masalah tersebut adalah meramalkan stok produk yang harus disediakan pada periode berikutnya. Metode peramalan yang dipilih pada penelitian ini adalah Single Moving Average (SMA) yang dihitung nilai error-nya menggunakan beberapa matriks evaluasi diantaranya Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), dan Mean Absolute Percentage Error (MAPE). Penelitian ini bertujuan untuk meramalkan penjualan di periode selanjutnya menggunakan data penjualan pada periode sebelumnya. Hasil peramalan SMA menggunakan orde 3 pada bulan Juli 2023 yaitu 1359,3333 dengan perhitungan MAE sebesar 303,0667, MSE sebesar 153873,1, RMSE sebesar 392,2666, dan MAPE sebesar 39,0342% yang masuk ke dalam kategori wajar.
利用单一移动平均数预测印刷品和文具用品的库存量
每家以销售产品为导向的企业大多需要有关其销售产品的信息,包括库存信息。每个企业都有自己管理这些数据的方法。通常面临的问题是,为某一时期需求量不大的产品准备过多的库存,反之亦然,为某一时期需求量大的产品准备过少的库存。产品库存积压会导致产品因时间过长而损坏,而产品库存不足则会导致消费者信心下降,选择到其他地方购买产品。解决这一问题的办法之一是预测下一时期必须提供的产品库存量。本研究选择的预测方法是单次移动平均法(SMA),该方法使用多个评估矩阵进行计算,包括平均绝对误差(MAE)、平均平方误差(MSE)、均方根误差(RMSE)和平均绝对百分比误差(MAPE)。本研究旨在利用上一期的销售数据预测下一期的销售情况。使用 2023 年 7 月订单 3 进行 SMA 预测的结果为 1359.3333,MAE 计算值为 303.0667,MSE 为 153873.1,RMSE 为 392.2666,MAPE 为 39.0342%,属于合理范畴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信