{"title":"Linear maps preserving (p, k) norms of tensor products of matrices","authors":"Zejun Huang, Nung-Sing Sze, Run Zheng","doi":"10.4153/s0008414x23000858","DOIUrl":null,"url":null,"abstract":"Let $m,n\\ge 2$ be integers. Denote by $M_n$ the set of $n\\times n$ complex matrices. Let $\\|\\cdot\\|_{(p,k)}$ be the $(p,k)$ norm on $M_{mn}$ with $1\\leq k\\leq mn$ and $2<p<\\infty$. We show that a linear map $\\phi:M_{mn}\\rightarrow M_{mn}$ satisfies $$\\|\\phi(A\\otimes B)\\|_{(p,k)}=\\|A\\otimes B\\|_{(p,k)} {\\rm\\quad for~ all\\quad}A\\in M_m {\\rm ~and ~}B\\in M_n$$ if and only if there exist unitary matrices $U,V\\in M_{mn}$ such that $$\\phi(A\\otimes B)=U(\\varphi_1(A)\\otimes \\varphi_2(B))V {\\rm\\quad for~ all\\quad}A\\in M_m {\\rm~ and~ }B\\in M_n,$$ where $\\varphi_s$ is the identity map or the transposition map $X\\to X^T$ for $s=1,2$. The result is also extended to multipartite systems.","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x23000858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let $m,n\ge 2$ be integers. Denote by $M_n$ the set of $n\times n$ complex matrices. Let $\|\cdot\|_{(p,k)}$ be the $(p,k)$ norm on $M_{mn}$ with $1\leq k\leq mn$ and $2