Johnson Naat, Yantus A. B. Neolaka, Yosep Lawa, Petrus Noni̇ng, Ayu W.m Menno, R. Rosni̇ta, Fransiskus B.o. Weo, Dewi Lestarani, Sri Sugiarti, Diah Iswanti̇ni̇
{"title":"Tyramine Adsorption Using the Modification of Takari Natural Sand-Based Silica with Bovine Serum Albumin (BSA)","authors":"Johnson Naat, Yantus A. B. Neolaka, Yosep Lawa, Petrus Noni̇ng, Ayu W.m Menno, R. Rosni̇ta, Fransiskus B.o. Weo, Dewi Lestarani, Sri Sugiarti, Diah Iswanti̇ni̇","doi":"10.18596/jotcsa.1244774","DOIUrl":null,"url":null,"abstract":"In this article, we use a batch method to convey tyramine adsorption by modifying Takari natural sand-based silica with BSA and tyramine adsorption. The research stages include the optimization of adsorbent mass, pH, temperature, determination of the isotherm model, and thermodynamic parameters of tyramine adsorption. The tyramine concentration was determined using UV-Vis. The characterizations carried out were functional groups using FT-IR and surface morphology using SEM. The results of FT-IR characterization demonstrated the success of BSA modification, as observed in the C-H, N-H, and C-N groups, which are the typical functional groups of BSA. The SEM image of SiO2@BSA before tyramine adsorption revealed unevenly sized particles, uneven distribution, and agglomeration, leading to larger particles. The morphology of SiO2@BSA-tyramine appeared to be more uniform, exhibiting a smoother shape with a slightly uneven surface. The optimum pH was 5 (qe=11.74 mg/g), and the optimum temperature was 303 K (qe= 2.47 mg/g). The isotherm study showed that the adsorption adhered to the Redlich-Peterson isotherm model with an R2 value of 0.987 (qe=5.157 mg/g and n =3.759). The thermodynamic study demonstrated ∆Ho = 49.08 kJ/mol, ∆Go =-17.84; -20.05 and -22.26 kJ/mol, and ∆So =0.22 kJ/mol.K. These results indicated that the tyramine adsorption process on SiO2@BSA adsorbent occurred endothermically and spontaneously at the temperature of 303 K, and the adsorption was of a physical-chemical adsorption type.","PeriodicalId":17299,"journal":{"name":"Journal of the Turkish Chemical Society Section A: Chemistry","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Turkish Chemical Society Section A: Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18596/jotcsa.1244774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we use a batch method to convey tyramine adsorption by modifying Takari natural sand-based silica with BSA and tyramine adsorption. The research stages include the optimization of adsorbent mass, pH, temperature, determination of the isotherm model, and thermodynamic parameters of tyramine adsorption. The tyramine concentration was determined using UV-Vis. The characterizations carried out were functional groups using FT-IR and surface morphology using SEM. The results of FT-IR characterization demonstrated the success of BSA modification, as observed in the C-H, N-H, and C-N groups, which are the typical functional groups of BSA. The SEM image of SiO2@BSA before tyramine adsorption revealed unevenly sized particles, uneven distribution, and agglomeration, leading to larger particles. The morphology of SiO2@BSA-tyramine appeared to be more uniform, exhibiting a smoother shape with a slightly uneven surface. The optimum pH was 5 (qe=11.74 mg/g), and the optimum temperature was 303 K (qe= 2.47 mg/g). The isotherm study showed that the adsorption adhered to the Redlich-Peterson isotherm model with an R2 value of 0.987 (qe=5.157 mg/g and n =3.759). The thermodynamic study demonstrated ∆Ho = 49.08 kJ/mol, ∆Go =-17.84; -20.05 and -22.26 kJ/mol, and ∆So =0.22 kJ/mol.K. These results indicated that the tyramine adsorption process on SiO2@BSA adsorbent occurred endothermically and spontaneously at the temperature of 303 K, and the adsorption was of a physical-chemical adsorption type.