Eliciting Informative Priors by Modelling Expert Decision Making

Julia R. Falconer, E. Frank, D. Polaschek, Chaitanya Joshi
{"title":"Eliciting Informative Priors by Modelling Expert Decision Making","authors":"Julia R. Falconer, E. Frank, D. Polaschek, Chaitanya Joshi","doi":"10.21428/cb6ab371.f88f1acf","DOIUrl":null,"url":null,"abstract":"This article introduces a new method for eliciting prior distributions from experts. The method models an expert decision-making process to infer a prior probability distribution for a rare event $A$. More specifically, assuming there exists a decision-making process closely related to $A$ which forms a decision $Y$, where a history of decisions have been collected. By modelling the data observed to make the historic decisions, using a Bayesian model, an analyst can infer a distribution for the parameters of the random variable $Y$. This distribution can be used to approximate the prior distribution for the parameters of the random variable for event $A$. This method is novel in the field of prior elicitation and has the potential of improving upon current methods by using real-life decision-making processes, that can carry real-life consequences, and, because it does not require an expert to have statistical knowledge. Future decision making can be improved upon using this method, as it highlights variables that are impacting the decision making process. An application for eliciting a prior distribution of recidivism, for an individual, is used to explain this method further.","PeriodicalId":502636,"journal":{"name":"CrimRxiv","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrimRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21428/cb6ab371.f88f1acf","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces a new method for eliciting prior distributions from experts. The method models an expert decision-making process to infer a prior probability distribution for a rare event $A$. More specifically, assuming there exists a decision-making process closely related to $A$ which forms a decision $Y$, where a history of decisions have been collected. By modelling the data observed to make the historic decisions, using a Bayesian model, an analyst can infer a distribution for the parameters of the random variable $Y$. This distribution can be used to approximate the prior distribution for the parameters of the random variable for event $A$. This method is novel in the field of prior elicitation and has the potential of improving upon current methods by using real-life decision-making processes, that can carry real-life consequences, and, because it does not require an expert to have statistical knowledge. Future decision making can be improved upon using this method, as it highlights variables that are impacting the decision making process. An application for eliciting a prior distribution of recidivism, for an individual, is used to explain this method further.
通过专家决策建模获取信息先验
本文介绍了一种从专家那里获取先验分布的新方法。该方法以专家决策过程为模型,推断罕见事件 $A$ 的先验概率分布。更具体地说,假设存在一个与 $A$ 密切相关的决策过程,该过程形成了一个决策 $Y$,并收集了决策的历史数据。通过使用贝叶斯模型对历史决策所观察到的数据进行建模,分析师可以推断出随机变量 $Y$ 的参数分布。该分布可用于近似事件 $A$ 的随机变量参数的先验分布。这种方法是先验推导领域的新颖方法,它可以利用现实生活中的决策过程来改进当前的方法,因为决策过程可能会产生现实生活中的后果,而且这种方法不要求专家具备统计知识。使用这种方法可以改进未来的决策,因为它可以突出影响决策过程的变量。为了进一步解释这种方法,我们使用了一种应用软件,用于激发个人累犯的先验分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信