Failure of Khintchine-type results along the polynomial image of IP0 sets

IF 1.1 3区 数学 Q1 MATHEMATICS
Rigoberto Zelada
{"title":"Failure of Khintchine-type results along the polynomial image of IP0 sets","authors":"Rigoberto Zelada","doi":"10.3934/dcds.2023152","DOIUrl":null,"url":null,"abstract":"In\"IP-sets and polynomial recurrence\", Bergelson, Furstenberg, and McCutcheon established the following far reaching extension of Khintchine's recurrence theorem: For any invertible probability preserving system $(X,\\mathcal A,\\mu,T)$, any non-constant polynomial $p\\in\\mathbb Z[x]$ with $p(0)=0$, any $A\\in\\mathcal A$, and any $\\epsilon>0$, the set $$R_\\epsilon^p(A)=\\{n\\in\\mathbb N\\,|\\,\\mu(A\\cap T^{-p(n)}A)>\\mu^2(A)-\\epsilon\\}$$ is IP$^*$, meaning that for any increasing sequence $(n_k)_{k\\in\\mathbb N}$ in $\\mathbb N$, $$\\text{FS}((n_k)_{k\\in\\mathbb N})\\cap R_\\epsilon^p(A)\\neq \\emptyset,$$ where $$\\text{FS}((n_k)_{k\\in\\mathbb N})=\\{\\sum_{j\\in F}n_j\\,|\\,F\\subseteq \\mathbb N\\,\\text{ is finite}\\text{ and }F\\neq\\emptyset\\}=\\{n_{k_1}+\\cdots+n_{k_t}\\,|\\,k_1<\\cdots<k_t,\\,t\\in\\mathbb N\\}.$$ In view of the potential new applications to combinatorics, this result has led to the question of whether a further strengthening of Khintchine's recurrence theorem holds, namely whether the set $R_\\epsilon^p(A)$ is IP$_0^*$ meaning that there exists a $t\\in\\mathbb N$ such that for any finite sequence $n_1<\\cdots<n_t$ in $\\mathbb N$, $$\\{\\sum_{j\\in F}n_j\\,|\\,F\\subseteq \\{1,...,t\\}\\text{ and }F\\neq \\emptyset\\}\\cap R_\\epsilon^p(A)\\neq \\emptyset.$$ In this paper we give a negative answer to this question by showing that for any given polynomial $p\\in\\mathbb Z[x]$ with deg$(p)>1$ and $p(0)=0$ there is an invertible probability preserving system $(X,\\mathcal A,\\mu,T)$, a set $A\\in\\mathcal A$, and an $\\epsilon>0$ for which the set $R_\\epsilon^p(A)$ is not IP$_0^*$.","PeriodicalId":51007,"journal":{"name":"Discrete and Continuous Dynamical Systems","volume":"85 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/dcds.2023152","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In"IP-sets and polynomial recurrence", Bergelson, Furstenberg, and McCutcheon established the following far reaching extension of Khintchine's recurrence theorem: For any invertible probability preserving system $(X,\mathcal A,\mu,T)$, any non-constant polynomial $p\in\mathbb Z[x]$ with $p(0)=0$, any $A\in\mathcal A$, and any $\epsilon>0$, the set $$R_\epsilon^p(A)=\{n\in\mathbb N\,|\,\mu(A\cap T^{-p(n)}A)>\mu^2(A)-\epsilon\}$$ is IP$^*$, meaning that for any increasing sequence $(n_k)_{k\in\mathbb N}$ in $\mathbb N$, $$\text{FS}((n_k)_{k\in\mathbb N})\cap R_\epsilon^p(A)\neq \emptyset,$$ where $$\text{FS}((n_k)_{k\in\mathbb N})=\{\sum_{j\in F}n_j\,|\,F\subseteq \mathbb N\,\text{ is finite}\text{ and }F\neq\emptyset\}=\{n_{k_1}+\cdots+n_{k_t}\,|\,k_1<\cdots1$ and $p(0)=0$ there is an invertible probability preserving system $(X,\mathcal A,\mu,T)$, a set $A\in\mathcal A$, and an $\epsilon>0$ for which the set $R_\epsilon^p(A)$ is not IP$_0^*$.
沿 IP0 集多项式图像的 Khintchine 型结果的失败
在 "IP 集与多项式递推 "一文中,伯格森、弗斯滕伯格和麦卡琴建立了以下对钦钦内递推定理的深远扩展:对于任何可逆概率保全系统 $(X,\mathcal A,\mu,T)$, 任何非常数多项式 $p\in\mathbb Z[x]$ 且 $p(0)=0$, 任何 $A\in\mathcal A$, 以及任何 $\epsilon>0$、集合 $$R_\epsilon^p(A)=\{n\in\mathbb N\,|\,\mu(A\cap T^{-p(n)}A)>\mu^2(A)-\epsilon\}$ 是 IP$^*$,意思是对于 $\mathbb N$ 中的任意递增序列 $(n_k)_{k\in\mathbb N}$、$$text{FS}((n_k)_{k\in\mathbb N})\cap R_epsilon^p(A)\neq \emptyset,$$ 其中 $$text{FS}((n_k)_{k\in\mathbb N})=\{sum_{j\in F}n_j\、|\,F\subseteq \mathbb N\,\text{ is finite}\text{ and }Fneq\emptyset\}={n_{k_1}+\cdots+n_{k_t}\、|\,k_11$并且$p(0)=0$存在一个可逆的概率保持系统$(X,\mathcal A,\mu,T)$,一个集合$A\in\mathcal A$,以及一个$epsilon>0$,对于这个集合$R_\epsilon^p(A)$不是IP$_0^*$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
175
审稿时长
6 months
期刊介绍: DCDS, series A includes peer-reviewed original papers and invited expository papers on the theory and methods of analysis, differential equations and dynamical systems. This journal is committed to recording important new results in its field and maintains the highest standards of innovation and quality. To be published in this journal, an original paper must be correct, new, nontrivial and of interest to a substantial number of readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信