Generalized logistic equation on Networks

Bilel Elbetch
{"title":"Generalized logistic equation on Networks","authors":"Bilel Elbetch","doi":"10.5802/crmath.460","DOIUrl":null,"url":null,"abstract":". In this paper, we consider a general single species model in a heterogeneous environment of n patches ( n ≥ 2), where each patch follows a generalized logistic law. First, we prove the global stability of the model.Second,inthecaseofperfectmixing,i.e.whenthemigrationratetendstoinfinity,thetotalpopulation follows a generalized logistic law with a carrying capacity which in general is di ff erent from the sum of the n carrying capacities. Next, we give some properties of the total equilibrium population and we compute its derivative at no dispersal. In some particular cases, we determine the conditions under which fragmentation and migration can lead to a total equilibrium population which might be greater or smaller than the sum of the n carrying capacities. Finally, we study an example of two-patch model where the first patch follows a logistic law and the second a Richard’s law, we give a complete classification of the model parameter space as to whether dispersal is beneficial or detrimental to the sum of two carrying capacities.","PeriodicalId":395483,"journal":{"name":"Comptes Rendus. Mathématique","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus. Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmath.460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. In this paper, we consider a general single species model in a heterogeneous environment of n patches ( n ≥ 2), where each patch follows a generalized logistic law. First, we prove the global stability of the model.Second,inthecaseofperfectmixing,i.e.whenthemigrationratetendstoinfinity,thetotalpopulation follows a generalized logistic law with a carrying capacity which in general is di ff erent from the sum of the n carrying capacities. Next, we give some properties of the total equilibrium population and we compute its derivative at no dispersal. In some particular cases, we determine the conditions under which fragmentation and migration can lead to a total equilibrium population which might be greater or smaller than the sum of the n carrying capacities. Finally, we study an example of two-patch model where the first patch follows a logistic law and the second a Richard’s law, we give a complete classification of the model parameter space as to whether dispersal is beneficial or detrimental to the sum of two carrying capacities.
网络上的广义逻辑方程
.在本文中,我们考虑了由 n 个斑块(n ≥ 2)组成的异质环境中的一般单物种模型,其中每个斑块都遵循广义对数定律。首先,我们证明了模型的全局稳定性;其次,在完全混杂的情况下,即迁移率趋于无穷大时,总种群遵循广义对数定律,其承载力一般不同于 n 个承载力之和。接下来,我们给出了总平衡种群的一些特性,并计算了它在不扩散时的导数。在某些特殊情况下,我们会确定在哪些条件下,分化和迁移会导致总平衡种群数量大于或小于 n 个承载力之和。最后,我们研究了一个双斑块模型的例子,其中第一个斑块遵循逻辑定律,第二个斑块遵循理查德定律,我们对模型参数空间进行了完整的分类,以确定分散对两个承载力之和是有利还是有害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信