Commutative unital rings elementarily equivalent to prescribed product rings

Pub Date : 2023-07-19 DOI:10.4064/fm232-8-2023
P. D'Aquino, A. Macintyre
{"title":"Commutative unital rings elementarily equivalent to prescribed product rings","authors":"P. D'Aquino, A. Macintyre","doi":"10.4064/fm232-8-2023","DOIUrl":null,"url":null,"abstract":"The classical work of Feferman Vaught gives a powerful, constructive analysis of definability in (generalized) product structures, and certain associated enriched Boolean structures. %structures in terms of definability in the component structures. Here, by closely related methods, but in the special setting of commutative unital rings, we obtain a kind of converse allowing us to determine in interesting cases, when a commutative unital R is elementarily equivalent to a nontrivial product of a family of commutative unital rings R_i. We use this in the model theoretic analysis of residue rings of models of Peano Arithmetic.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/fm232-8-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The classical work of Feferman Vaught gives a powerful, constructive analysis of definability in (generalized) product structures, and certain associated enriched Boolean structures. %structures in terms of definability in the component structures. Here, by closely related methods, but in the special setting of commutative unital rings, we obtain a kind of converse allowing us to determine in interesting cases, when a commutative unital R is elementarily equivalent to a nontrivial product of a family of commutative unital rings R_i. We use this in the model theoretic analysis of residue rings of models of Peano Arithmetic.
分享
查看原文
与规定积环元素等价的共元单环
费弗曼-沃特的经典著作对(广义)积结构和某些相关的丰富布尔结构的可定义性进行了有力的构造性分析。从成分结构中的可定义性来看%结构。在这里,通过密切相关的方法,但在换元单值环的特殊设置中,我们得到了一种反证,使我们能够在有趣的情况下确定换元单值环 R 何时在元素上等价于换元单值环 R_i 族的非琐积。我们将其用于皮亚诺算术模型的残差环的模型论分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信