APPLYING COLLABORATIVE FILTERING METHOD FOR DOCUMENT RECOMMENDER SYSTEM

Hung Quoc Ly, Nam Thi Phuong Phan
{"title":"APPLYING COLLABORATIVE FILTERING METHOD FOR DOCUMENT RECOMMENDER SYSTEM","authors":"Hung Quoc Ly, Nam Thi Phuong Phan","doi":"10.35382/tvujs.13.6.2023.2102","DOIUrl":null,"url":null,"abstract":"The recommender system helps recommend relevant information items to the user. In recommender systems, collaborative filtering is commonly used to gauge users' interest in new products. Collaborative filtering systems often rely on data about the similarity of users or products in the system in the past to predict preferences or new products for specific users. In this article, we apply the collaborative filtering technique with the k-nearest neighbor to recommend documents for the English center. The implementation process includes the following steps: Firstly, we build a system to collect and store data in the database; Secondly, we implement a recommendation algorithm with three cases, including Case 1 for new users, Case 2 for users who have seen the most document items, and Case 3 for centers' members. The results make it easier for users to find documents.","PeriodicalId":159074,"journal":{"name":"TRA VINH UNIVERSITY JOURNAL OF SCIENCE; ISSN: 2815-6072; E-ISSN: 2815-6099","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TRA VINH UNIVERSITY JOURNAL OF SCIENCE; ISSN: 2815-6072; E-ISSN: 2815-6099","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35382/tvujs.13.6.2023.2102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The recommender system helps recommend relevant information items to the user. In recommender systems, collaborative filtering is commonly used to gauge users' interest in new products. Collaborative filtering systems often rely on data about the similarity of users or products in the system in the past to predict preferences or new products for specific users. In this article, we apply the collaborative filtering technique with the k-nearest neighbor to recommend documents for the English center. The implementation process includes the following steps: Firstly, we build a system to collect and store data in the database; Secondly, we implement a recommendation algorithm with three cases, including Case 1 for new users, Case 2 for users who have seen the most document items, and Case 3 for centers' members. The results make it easier for users to find documents.
将协同过滤方法应用于文档推荐系统
推荐系统有助于向用户推荐相关的信息项目。在推荐系统中,协同过滤通常用于衡量用户对新产品的兴趣。协同过滤系统通常依靠过去系统中用户或产品的相似性数据来预测特定用户的偏好或新产品。在本文中,我们应用 k 近邻协同过滤技术为英语中心推荐文档。实施过程包括以下步骤:首先,我们建立了一个系统来收集数据并将其存储在数据库中;其次,我们实现了三种情况下的推荐算法,包括针对新用户的情况 1、针对看过最多文档项目的用户的情况 2 和针对中心会员的情况 3。结果使用户更容易找到文档。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信