EKSTRKASI FITUR BENTUK MENGGUNAKAN METODE CONVEX HULL UNTUK KLASIFIKASI JENIS PISANG MENGGUNAKAN K-NEAREST NEIGHBOR

Hendro Nugroho, Andy Rachman, Erfan Septian Basuki
{"title":"EKSTRKASI FITUR BENTUK MENGGUNAKAN METODE CONVEX HULL UNTUK KLASIFIKASI JENIS PISANG MENGGUNAKAN K-NEAREST NEIGHBOR","authors":"Hendro Nugroho, Andy Rachman, Erfan Septian Basuki","doi":"10.21107/simantec.v11i2.20023","DOIUrl":null,"url":null,"abstract":"There are many types of bananas in Indonesia, for example Ambon bananas, Kepok bananas, Susu bananas, Mas bananas and Cavendish bananas. With the existence of many types of bananas, to determine the type of banana, it still uses judgment by the human eye based on the shape of the banana. In this study to find out the type of banana using automatic classification of banana image input. The results of the classification are expected to determine the type of banana based on tranning data. Banana image input is extracted using the Convex Hull method to obtain Solidity and Convexity values. The steps to get the classification value are carried out by inputting the banana image, converting the color to binary (black and white), extracting the Convex Hull shape feature, calculating the convexity Solidity value and the Solidity and convexity value of the banana image, the classification process is carried out using the K-Nearst Neighbor method ( K-NN). To determine the success rate of the classification results carried out the testing process. From the test results, the process of calculating the accuracy of all the data tested is carried out. The results obtained in this study with an accuracy value of 56%.","PeriodicalId":143836,"journal":{"name":"Jurnal Simantec","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Simantec","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21107/simantec.v11i2.20023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There are many types of bananas in Indonesia, for example Ambon bananas, Kepok bananas, Susu bananas, Mas bananas and Cavendish bananas. With the existence of many types of bananas, to determine the type of banana, it still uses judgment by the human eye based on the shape of the banana. In this study to find out the type of banana using automatic classification of banana image input. The results of the classification are expected to determine the type of banana based on tranning data. Banana image input is extracted using the Convex Hull method to obtain Solidity and Convexity values. The steps to get the classification value are carried out by inputting the banana image, converting the color to binary (black and white), extracting the Convex Hull shape feature, calculating the convexity Solidity value and the Solidity and convexity value of the banana image, the classification process is carried out using the K-Nearst Neighbor method ( K-NN). To determine the success rate of the classification results carried out the testing process. From the test results, the process of calculating the accuracy of all the data tested is carried out. The results obtained in this study with an accuracy value of 56%.
使用凸壳法提取形状特征,利用 K 最近邻法进行香蕉类型分类
印度尼西亚的香蕉种类繁多,例如安汶香蕉、凯波克香蕉、苏苏香蕉、马斯香蕉和卡文迪许香蕉。虽然香蕉的种类很多,但要确定香蕉的种类,仍然要靠人眼根据香蕉的形状进行判断。本研究通过对输入的香蕉图像进行自动分类,找出香蕉的类型。分类结果有望根据转录数据确定香蕉的类型。香蕉图像输入采用凸壳法提取,以获得实度和凸度值。获得分类值的步骤是:输入香蕉图像,将颜色转换为二进制(黑白),提取凸壳形状特征,计算香蕉图像的凸度实度值和实度与凸度值,然后使用 K-Nearst Neighbor 方法(K-NN)进行分类。为了确定分类结果的成功率,进行了测试过程。根据测试结果,计算所有测试数据的准确率。本研究得出的结果准确率为 56%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信