An Ensemble Voting Approach for Dropout Student Classification Using Decision Tree C4.5, K-Nearest Neighbor and Backpropagation

Daffa Nur Cholis, Nurissaidah Ulinnuha
{"title":"An Ensemble Voting Approach for Dropout Student Classification Using Decision Tree C4.5, K-Nearest Neighbor and Backpropagation","authors":"Daffa Nur Cholis, Nurissaidah Ulinnuha","doi":"10.24014/ijaidm.v6i1.23412","DOIUrl":null,"url":null,"abstract":"Many factors cause drop out in students. This study classified active students and drop out students using 1092 student data consisting of 557 active student data and 535 drop out student data. The independent variables used are Semester, Semester Credit Units (SKS), Semester Grade Point Average (IPS), Grade Point Average (IPK), admission pathways and Single Tuition Fee (UKT). Classification is carried out using the Ensemble Voting method where the method will combine the Decision Tree C4.5, KNN and Backpropagation methods as a single method. In addition to knowing the classification of active students and drop out students, this study aims to prove whether the Ensemble Voting method is able to get better results than the single method. This classification using a comparison of training and testing data of 90:10 to build model. Classification results from a single method will be included in the Ensemble Voting method. The Decision Tree C4.5 method gets 95.45% accuracy, 98.03% precision and 92.59% recall. KNN gets 96.36% accuracy, 100% precision and 92.59% recall. Backpropagation gets 90.90% accuracy, 95.83% precision and 95.18% recall. Meanwhile, the Ensemble Voting rule used is Ensemble Soft Voting with a weight of (2,1,1). Ensemble Voting with Ensemble Soft Voting rules is able to improve the accuracy, precision and recall values with 98.18% accuracy, 100% precision and 96.29% recall.","PeriodicalId":385582,"journal":{"name":"Indonesian Journal of Artificial Intelligence and Data Mining","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Artificial Intelligence and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24014/ijaidm.v6i1.23412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many factors cause drop out in students. This study classified active students and drop out students using 1092 student data consisting of 557 active student data and 535 drop out student data. The independent variables used are Semester, Semester Credit Units (SKS), Semester Grade Point Average (IPS), Grade Point Average (IPK), admission pathways and Single Tuition Fee (UKT). Classification is carried out using the Ensemble Voting method where the method will combine the Decision Tree C4.5, KNN and Backpropagation methods as a single method. In addition to knowing the classification of active students and drop out students, this study aims to prove whether the Ensemble Voting method is able to get better results than the single method. This classification using a comparison of training and testing data of 90:10 to build model. Classification results from a single method will be included in the Ensemble Voting method. The Decision Tree C4.5 method gets 95.45% accuracy, 98.03% precision and 92.59% recall. KNN gets 96.36% accuracy, 100% precision and 92.59% recall. Backpropagation gets 90.90% accuracy, 95.83% precision and 95.18% recall. Meanwhile, the Ensemble Voting rule used is Ensemble Soft Voting with a weight of (2,1,1). Ensemble Voting with Ensemble Soft Voting rules is able to improve the accuracy, precision and recall values with 98.18% accuracy, 100% precision and 96.29% recall.
使用决策树 C4.5、K-近邻和反向传播对辍学学生进行分类的集合投票法
导致学生辍学的因素很多。本研究使用 1092 个学生数据对在读学生和辍学学生进行了分类,其中包括 557 个在读学生数据和 535 个辍学学生数据。使用的自变量包括学期、学期学分(SKS)、学期平均学分绩点(IPS)、平均学分绩点(IPK)、入学途径和单学费(UKT)。分类使用集合投票法进行,该方法将决策树 C4.5、KNN 和反向传播法结合为一种方法。除了了解在校学生和辍学学生的分类情况外,本研究还旨在证明集合投票法是否能比单一方法获得更好的结果。这种分类方法使用 90:10 的训练数据和测试数据对比来建立模型。单一方法的分类结果将包含在集合投票法中。决策树 C4.5 方法的准确率为 95.45%,精确率为 98.03%,召回率为 92.59%。KNN 的准确率为 96.36%,精确率为 100%,召回率为 92.59%。反向传播法的准确率为 90.90%,精确率为 95.83%,召回率为 95.18%。同时,使用的集合投票规则是权重为(2,1,1)的集合软投票。采用集合软投票规则的集合投票能够提高准确率、精确率和召回率,准确率为 98.18%,精确率为 100%,召回率为 96.29%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信