3-Neighbor bootstrap percolation on grids

IF 0.5 4区 数学 Q3 MATHEMATICS
Jaka Hedžet, Michael A. Henning
{"title":"3-Neighbor bootstrap percolation on grids","authors":"Jaka Hedžet, Michael A. Henning","doi":"10.7151/dmgt.2531","DOIUrl":null,"url":null,"abstract":"Given a graph $G$ and assuming that some vertices of $G$ are infected, the $r$-neighbor bootstrap percolation rule makes an uninfected vertex $v$ infected if $v$ has at least $r$ infected neighbors. The $r$-percolation number, $m(G, r)$, of $G$ is the minimum cardinality of a set of initially infected vertices in $G$ such that after continuously performing the $r$-neighbor bootstrap percolation rule each vertex of $G$ eventually becomes infected. In this paper, we consider the $3$-bootstrap percolation number of grids with fixed widths. If $G$ is the cartesian product $P_3 \\square P_m$ of two paths of orders~$3$ and $m$, we prove that $m(G,3)=\\frac{3}{2}(m+1)-1$, when $m$ is odd, and $m(G,3)=\\frac{3}{2}m +1$, when $m$ is even. Moreover if $G$ is the cartesian product $P_5 \\square P_m$, we prove that $m(G,3)=2m+2$, when $m$ is odd, and $m(G,3)=2m+3$, when $m$ is even. If $G$ is the cartesian product $P_4 \\square P_m$, we prove that $m(G,3)$ takes on one of two possible values, namely $m(G,3) = \\lfloor \\frac{5(m+1)}{3} \\rfloor + 1$ or $m(G,3) = \\lfloor \\frac{5(m+1)}{3} \\rfloor + 2$.","PeriodicalId":48875,"journal":{"name":"Discussiones Mathematicae Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussiones Mathematicae Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7151/dmgt.2531","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a graph $G$ and assuming that some vertices of $G$ are infected, the $r$-neighbor bootstrap percolation rule makes an uninfected vertex $v$ infected if $v$ has at least $r$ infected neighbors. The $r$-percolation number, $m(G, r)$, of $G$ is the minimum cardinality of a set of initially infected vertices in $G$ such that after continuously performing the $r$-neighbor bootstrap percolation rule each vertex of $G$ eventually becomes infected. In this paper, we consider the $3$-bootstrap percolation number of grids with fixed widths. If $G$ is the cartesian product $P_3 \square P_m$ of two paths of orders~$3$ and $m$, we prove that $m(G,3)=\frac{3}{2}(m+1)-1$, when $m$ is odd, and $m(G,3)=\frac{3}{2}m +1$, when $m$ is even. Moreover if $G$ is the cartesian product $P_5 \square P_m$, we prove that $m(G,3)=2m+2$, when $m$ is odd, and $m(G,3)=2m+3$, when $m$ is even. If $G$ is the cartesian product $P_4 \square P_m$, we prove that $m(G,3)$ takes on one of two possible values, namely $m(G,3) = \lfloor \frac{5(m+1)}{3} \rfloor + 1$ or $m(G,3) = \lfloor \frac{5(m+1)}{3} \rfloor + 2$.
3-网格上的邻接引导渗流
给定一个图 $G$,假设 $G$ 的一些顶点被感染,如果 $v$ 有至少 $r$ 被感染的邻居,则 $r$ 邻居引导渗滤规则会使未感染的顶点 $v$ 被感染。$G$的$r$渗滤数$m(G, r)$是$G$中初始受感染顶点集合的最小心数,即在连续执行$r$-邻居引导渗滤规则后,$G$的每个顶点最终都会被感染。在本文中,我们考虑的是具有固定宽度的网格的 $3$-自举渗滤数。如果 $G$ 是两条阶数~$3$和 $m$ 的路径的卡方积 $P_3 \square P_m$,我们证明当 $m$ 是奇数时,$m(G,3)=\frac{3}{2}(m+1)-1$;当 $m$ 是偶数时,$m(G,3)=\frac{3}{2}m +1$。此外,如果 $G$ 是车积 $P_5 \square P_m$,我们证明当 $m$ 是奇数时,$m(G,3)=2m+2$;当 $m$ 是偶数时,$m(G,3)=2m+3$。如果 $G$ 是车积 $P_4 \square P_m$,我们证明 $m(G,3)$ 取两个可能值中的一个,即 $m(G,3) = \lfloor \frac{5(m+1)}{3}.\rfloor + 1$ 或 $m(G,3) = \lfloor \frac{5(m+1)}{3}\rfloor + 2$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
22
审稿时长
53 weeks
期刊介绍: The Discussiones Mathematicae Graph Theory publishes high-quality refereed original papers. Occasionally, very authoritative expository survey articles and notes of exceptional value can be published. The journal is mainly devoted to the following topics in Graph Theory: colourings, partitions (general colourings), hereditary properties, independence and domination, structures in graphs (sets, paths, cycles, etc.), local properties, products of graphs as well as graph algorithms related to these topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信