{"title":"Equidistribution for sets which are not necessarily Galois stable: On a theorem of Mignotte","authors":"F. Amoroso, Arnaud Plessis","doi":"10.2422/2036-2145.202309_021","DOIUrl":null,"url":null,"abstract":"An important result of Bilu deals with the equidistribution of the Galois orbits of a sequence $(\\alpha_n)_n$ in $\\overline{\\mathbb{Q}}^*$. Here, we prove a quantitative equidistribution theorem for a sequence of finite subsets in $\\overline{\\mathbb{Q}}^*$ which are not necessarily stable by Galois action. We follow a method of Mignotte.","PeriodicalId":8132,"journal":{"name":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202309_021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
An important result of Bilu deals with the equidistribution of the Galois orbits of a sequence $(\alpha_n)_n$ in $\overline{\mathbb{Q}}^*$. Here, we prove a quantitative equidistribution theorem for a sequence of finite subsets in $\overline{\mathbb{Q}}^*$ which are not necessarily stable by Galois action. We follow a method of Mignotte.