On Conditions for Controllability and Local Regularity of A System of Differential Equations

IF 0.3 Q4 MATHEMATICS
Ahmad Hadra Zuhri, Yudi Soeharyadi, Jalina Widjaja
{"title":"On Conditions for Controllability and Local Regularity of A System of Differential Equations","authors":"Ahmad Hadra Zuhri, Yudi Soeharyadi, Jalina Widjaja","doi":"10.22342/jims.29.2.1584.259-270","DOIUrl":null,"url":null,"abstract":"We consider a system of differential equations on a Banach space X given by: x'(t) = Ax(t) + u(t)f(t, x(t)), x(0) = x0, where A is an infinitesimal generator of a C0-semigroup, f : R0+ × X → X is a locally Lipschitz function, and u ∈ Lp([0, T], R) is a control defined on [0, T] with 1 < p ≤ ∞. Using the Compactness Principle and the generalization of Gronwalls Lemma, the system is shown to be controllable for a γ-bounded function f. Another result of this study is the local existence and the uniqueness of the solution of the system for locally bounded function f through weighted ω-norm.","PeriodicalId":42206,"journal":{"name":"Journal of the Indonesian Mathematical Society","volume":"2016 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indonesian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22342/jims.29.2.1584.259-270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a system of differential equations on a Banach space X given by: x'(t) = Ax(t) + u(t)f(t, x(t)), x(0) = x0, where A is an infinitesimal generator of a C0-semigroup, f : R0+ × X → X is a locally Lipschitz function, and u ∈ Lp([0, T], R) is a control defined on [0, T] with 1 < p ≤ ∞. Using the Compactness Principle and the generalization of Gronwalls Lemma, the system is shown to be controllable for a γ-bounded function f. Another result of this study is the local existence and the uniqueness of the solution of the system for locally bounded function f through weighted ω-norm.
论微分方程系统的可控性和局部正则性条件
我们考虑巴拿赫空间 X 上的微分方程系统,其给定方程为x'(t) = Ax(t) + u(t)f(t, x(t)), x(0) = x0,其中 A 是 C0 半群的无穷小生成器,f :f : R0+ × X → X 是局部 Lipschitz 函数,u∈ Lp([0, T], R) 是定义在 [0, T] 上的控制,1 < p ≤ ∞。利用紧凑性原理和 Gronwalls Lemma 的广义,证明该系统对于一个 γ 有界函数 f 是可控的。本研究的另一个结果是通过加权 ω 准则证明该系统的解对于局部有界函数 f 的局部存在性和唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
20
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信