ON THE FEATURES OF THE CHARACTERISTICS OF THE SPECTRUM AND PULSE OF THE ECHO SIGNAL DURING ULTRASONIC CONTROL OF METAL THROUGH THE FUSED LAYER BY ANGLE BEAM LONGITUDINAL WAVE PROBES

V. N. Danilov
{"title":"ON THE FEATURES OF THE CHARACTERISTICS OF THE SPECTRUM AND PULSE OF THE ECHO SIGNAL DURING ULTRASONIC CONTROL OF METAL THROUGH THE FUSED LAYER BY ANGLE BEAM LONGITUDINAL WAVE PROBES","authors":"V. N. Danilov","doi":"10.14489/td.2023.08.pp.004-016","DOIUrl":null,"url":null,"abstract":"Based on computer simulation of an echo signal from a side drilled hole type reflector during ultrasonic control of the base metal by an angle beam longitudinal wave probe with nominal frequency of 1.8 MHz through transversal-isotropic elastic layer of constant thickness at different values of the anisotropy parameter, it is shown that with an increase in the anisotropy parameter there is a shift of the signal maximum in the direction of increasing the distance to the reflector, which is associated with an increase in the phase velocity of the quasi-longitudinal wave in the layer, and an increase in the maximum value due to a change in the double transformation coefficient when the longitudinal wave passes from the prism of the probe to the layer and back. For a probe with a frequency of 2.5 MHz, an increase in the anisotropy parameter leads to a decrease in the value of the echo maximum, since the increased increase in the attenuation of the quasi-longitudinal wave in the layer is not compensated by a change in the double transformation coefficient. For different nominal angles of probe (45…60°), a noticeable change in the shapes of frequency spectra and echo pulses at different values of the anisotropy parameter has not been established. The effect of increasing the distance from the control surface to the axis of the cylindrical hole at a constant layer thickness on the change of the amplitude of the echo signal in the calculated range of values of the anisotropy parameter is shown.","PeriodicalId":432853,"journal":{"name":"Kontrol'. Diagnostika","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kontrol'. Diagnostika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14489/td.2023.08.pp.004-016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Based on computer simulation of an echo signal from a side drilled hole type reflector during ultrasonic control of the base metal by an angle beam longitudinal wave probe with nominal frequency of 1.8 MHz through transversal-isotropic elastic layer of constant thickness at different values of the anisotropy parameter, it is shown that with an increase in the anisotropy parameter there is a shift of the signal maximum in the direction of increasing the distance to the reflector, which is associated with an increase in the phase velocity of the quasi-longitudinal wave in the layer, and an increase in the maximum value due to a change in the double transformation coefficient when the longitudinal wave passes from the prism of the probe to the layer and back. For a probe with a frequency of 2.5 MHz, an increase in the anisotropy parameter leads to a decrease in the value of the echo maximum, since the increased increase in the attenuation of the quasi-longitudinal wave in the layer is not compensated by a change in the double transformation coefficient. For different nominal angles of probe (45…60°), a noticeable change in the shapes of frequency spectra and echo pulses at different values of the anisotropy parameter has not been established. The effect of increasing the distance from the control surface to the axis of the cylindrical hole at a constant layer thickness on the change of the amplitude of the echo signal in the calculated range of values of the anisotropy parameter is shown.
角束纵波探头对金属熔融层进行超声波控制时回波信号频谱和脉冲特征的研究
在用额定频率为 1.结果表明,随着各向异性参数的增加,信号的最大值会向反射器距离增加的方向移动,这与层中准纵波相位速度的增加有关,以及纵波从探头棱镜传到层中再传回时,由于双变换系数的变化而导致的最大值的增加。对于频率为 2.5 MHz 的探头,各向异性参数的增加会导致回波最大值的减小,因为层中准纵波衰减的增加并没有通过双重变换系数的变化得到补偿。对于不同的名义探头角度(45...60°),在各向异性参数的不同值下,频率谱和回波脉冲的形状没有发生明显变化。图中显示了在各向异性参数的计算值范围内,在层厚度不变的情况下,增加控制面到圆柱孔轴线的距离对回波信号振幅变化的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信