Hybridisation of artificial neural network with particle swarm optimisation for water level prediction

Sarah J. Mohammed, S. Zubaidi
{"title":"Hybridisation of artificial neural network with particle swarm optimisation for water level prediction","authors":"Sarah J. Mohammed, S. Zubaidi","doi":"10.31185/ejuow.vol11.iss2.404","DOIUrl":null,"url":null,"abstract":"Accurate water level (WL) prediction is essential for the efficient management of various water resource projects. The creation of a reliable model for WL forecasting is still a difficult task in water resource management. This study applies an artificial neural network (ANN) integrated with the particle swarm optimisation algorithm (PSO-ANN) for simulating monthly WL of the Tigris River in Alkut City, Iraq. Data pre-treatment methods are utilised for improving raw data quality and detect the optimal predictors. Monthly WL and climatic variables from 2011 to 2020, were used to construct and validate the proposed technique. The results showed that singular spectrum analysis (SSA) is a high-performance technique for denoising time series. The PSO-ANN model produces good results coefficient of determination (R2) of 0.85.","PeriodicalId":184256,"journal":{"name":"Wasit Journal of Engineering Sciences","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wasit Journal of Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31185/ejuow.vol11.iss2.404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate water level (WL) prediction is essential for the efficient management of various water resource projects. The creation of a reliable model for WL forecasting is still a difficult task in water resource management. This study applies an artificial neural network (ANN) integrated with the particle swarm optimisation algorithm (PSO-ANN) for simulating monthly WL of the Tigris River in Alkut City, Iraq. Data pre-treatment methods are utilised for improving raw data quality and detect the optimal predictors. Monthly WL and climatic variables from 2011 to 2020, were used to construct and validate the proposed technique. The results showed that singular spectrum analysis (SSA) is a high-performance technique for denoising time series. The PSO-ANN model produces good results coefficient of determination (R2) of 0.85.
人工神经网络与粒子群优化技术在水位预测中的混合应用
准确的水位(WL)预测对各种水资源项目的有效管理至关重要。建立可靠的水位预测模型仍是水资源管理中的一项艰巨任务。本研究将人工神经网络(ANN)与粒子群优化算法(PSO-ANN)相结合,用于模拟伊拉克阿尔库特市底格里斯河的月水位。数据预处理方法用于提高原始数据质量和检测最佳预测因子。利用 2011 年至 2020 年的月度 WL 和气候变量来构建和验证所提出的技术。结果表明,奇异谱分析(SSA)是一种高性能的时间序列去噪技术。PSO-ANN 模型的判定系数 (R2) 为 0.85,效果良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信