Toward Exascale Computation for Turbomachinery Flows

Yuhang Fu, Weiqi Shen, J. Cui, Yao Zheng, Guangwen Yang, Zhao Liu, Jifa Zhang, Tingwei Ji, Fangfang Xie, Xiaojing Lv, Hanyue Liu, Xu Liu, Xiyang Liu, Xiaoyu Song, Guocheng Tao, Yan Yan, P. Tucker, Steven A. E. Miller, Shirui Luo, S. Koric, Weimin Zheng
{"title":"Toward Exascale Computation for Turbomachinery Flows","authors":"Yuhang Fu, Weiqi Shen, J. Cui, Yao Zheng, Guangwen Yang, Zhao Liu, Jifa Zhang, Tingwei Ji, Fangfang Xie, Xiaojing Lv, Hanyue Liu, Xu Liu, Xiyang Liu, Xiaoyu Song, Guocheng Tao, Yan Yan, P. Tucker, Steven A. E. Miller, Shirui Luo, S. Koric, Weimin Zheng","doi":"10.1145/3581784.3627040","DOIUrl":null,"url":null,"abstract":"A state-of-the-art large eddy simulation code has been developed to solve compressible flows in turbomachinery. The code has been engineered with a high degree of scalability, enabling it to effectively leverage the many-core architecture of the new Sunway system. A consistent performance of 115.8 DP-PFLOPs has been achieved on a high-pressure turbine cascade consisting of over 1.69 billion mesh elements and 865 billion Degree of Freedoms (DOFs). By leveraging a high-order unstructured solver and its portability to large heterogeneous parallel systems, we have progressed towards solving the grand challenge problem outlined by NASA [1], which involves a time-dependent simulation of a complete engine, incorporating all the aerodynamic and heat transfer components.","PeriodicalId":124077,"journal":{"name":"Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3581784.3627040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A state-of-the-art large eddy simulation code has been developed to solve compressible flows in turbomachinery. The code has been engineered with a high degree of scalability, enabling it to effectively leverage the many-core architecture of the new Sunway system. A consistent performance of 115.8 DP-PFLOPs has been achieved on a high-pressure turbine cascade consisting of over 1.69 billion mesh elements and 865 billion Degree of Freedoms (DOFs). By leveraging a high-order unstructured solver and its portability to large heterogeneous parallel systems, we have progressed towards solving the grand challenge problem outlined by NASA [1], which involves a time-dependent simulation of a complete engine, incorporating all the aerodynamic and heat transfer components.
实现涡轮机械流动的超大规模计算
我们开发了一种最先进的大涡流模拟代码,用于解决涡轮机械中的可压缩流动问题。该代码具有高度的可扩展性,能够有效利用新 Sunway 系统的多核架构。在由超过 16.9 亿个网格元素和 8650 亿个自由度 (DOF) 组成的高压涡轮级联上,该代码实现了 115.8 DP-PFLOPs 的稳定性能。通过利用高阶非结构化求解器及其在大型异构并行系统中的可移植性,我们在解决美国国家航空航天局(NASA)[1]提出的重大挑战问题方面取得了进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信