{"title":"Existence for a nonlocal porous medium equations of Kirchhoff type with logarithmic nonlinearity","authors":"Uğur Sert","doi":"10.47000/tjmcs.1260780","DOIUrl":null,"url":null,"abstract":"We study the Dirichlet problem for the nonlocal parabolic equation of the Kirchhoff type \\[ u_{t}-a\\left(\\|u\\|_{L^{p}(\\Omega)}^{p}\\right)\\sum\\limits_{i=1}^{n}D_{i}\\left( \\left\\vert u\\right\\vert ^{p-2}D_{i}u\\right) +b(x,t) \\left\\vert u \\right\\vert ^{\\alpha \\left( x,t\\right) -2}u\\log|u|=f\\left( x,t\\right) \\quad \\text{in $Q_T=\\Omega \\times (0,T)$}, \\] where $p\\geq2$, $T>0$, $\\Omega \\subset\\mathbb{R}^{n}$, $n\\geq 2$, is a smooth bounded domain. The coefficient $a(\\cdot)$ is real-valued function defined on $\\mathbb{R}_+$. It is shown that the problem has a weak solution under appropriate and general conditions on $a(\\cdot)$, $\\alpha(\\cdot,\\cdot)$ and $b(\\cdot)$.","PeriodicalId":506513,"journal":{"name":"Turkish Journal of Mathematics and Computer Science","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Mathematics and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47000/tjmcs.1260780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We study the Dirichlet problem for the nonlocal parabolic equation of the Kirchhoff type \[ u_{t}-a\left(\|u\|_{L^{p}(\Omega)}^{p}\right)\sum\limits_{i=1}^{n}D_{i}\left( \left\vert u\right\vert ^{p-2}D_{i}u\right) +b(x,t) \left\vert u \right\vert ^{\alpha \left( x,t\right) -2}u\log|u|=f\left( x,t\right) \quad \text{in $Q_T=\Omega \times (0,T)$}, \] where $p\geq2$, $T>0$, $\Omega \subset\mathbb{R}^{n}$, $n\geq 2$, is a smooth bounded domain. The coefficient $a(\cdot)$ is real-valued function defined on $\mathbb{R}_+$. It is shown that the problem has a weak solution under appropriate and general conditions on $a(\cdot)$, $\alpha(\cdot,\cdot)$ and $b(\cdot)$.