A Modified Inexact SARAH Algorithm with Stabilized Barzilai-Borwein Step-Size in Machine learning

Fusheng Wang, Yi-ming Yang, Xiaotong Li, Ovanes Petrosian
{"title":"A Modified Inexact SARAH Algorithm with Stabilized Barzilai-Borwein Step-Size in Machine learning","authors":"Fusheng Wang, Yi-ming Yang, Xiaotong Li, Ovanes Petrosian","doi":"10.19139/soic-2310-5070-1712","DOIUrl":null,"url":null,"abstract":"The Inexact SARAH (iSARAH) algorithm as a variant of SARAH algorithm, which does not require computation of the exact gradient, can be applied to solving general expectation minimization problems rather than only finite sum problems. The performance of iSARAH algorithm is frequently affected by the step size selection, and how to choose an appropriate step size is still a worthwhile problem for study. In this paper, we propose to use the stabilized Barzilai-Borwein (SBB) method to automatically compute step size for iSARAH algorithm, which leads to a new algorithm called iSARAH-SBB. By introducing this adaptive step size in the design of the new algorithm, iSARAH-SBB can take better advantages of both iSARAH and SBB methods. We analyse the convergence rate and complexity of the modified algorithm under the usual assumptions. Numerical experimental results on standard data sets demonstrate the feasibility and effectiveness of our proposed algorithm.","PeriodicalId":131002,"journal":{"name":"Statistics, Optimization & Information Computing","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, Optimization & Information Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-1712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Inexact SARAH (iSARAH) algorithm as a variant of SARAH algorithm, which does not require computation of the exact gradient, can be applied to solving general expectation minimization problems rather than only finite sum problems. The performance of iSARAH algorithm is frequently affected by the step size selection, and how to choose an appropriate step size is still a worthwhile problem for study. In this paper, we propose to use the stabilized Barzilai-Borwein (SBB) method to automatically compute step size for iSARAH algorithm, which leads to a new algorithm called iSARAH-SBB. By introducing this adaptive step size in the design of the new algorithm, iSARAH-SBB can take better advantages of both iSARAH and SBB methods. We analyse the convergence rate and complexity of the modified algorithm under the usual assumptions. Numerical experimental results on standard data sets demonstrate the feasibility and effectiveness of our proposed algorithm.
机器学习中使用稳定的 Barzilai-Borwein 步长的改进型非精确 SARAH 算法
非精确 SARAH(iSARAH)算法作为 SARAH 算法的一个变种,不需要计算精确梯度,可以用于求解一般的期望最小化问题,而不仅仅是有限和问题。iSARAH 算法的性能经常受到步长选择的影响,如何选择合适的步长仍然是一个值得研究的问题。在本文中,我们提出使用稳定的 Barzilai-Borwein (SBB) 方法来自动计算 iSARAH 算法的步长,并由此产生了一种名为 iSARAH-SBB 的新算法。通过在新算法的设计中引入自适应步长,iSARAH-SBB 可以更好地发挥 iSARAH 和 SBB 方法的优势。我们分析了改进算法在常规假设条件下的收敛速度和复杂性。在标准数据集上的数值实验结果证明了我们提出的算法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信