Machine Learning for Prediction of Maternal Hemorrhage and Transfusion (Preprint)

H. Ahmadzia, Alexa C Dzienny, Mike Bopf, Jaclyn M Phillips, Jerome Jeffrey Federspiel, Richard Amdur, Madeline Murguia Rice, Laritza Rodriguez
{"title":"Machine Learning for Prediction of Maternal Hemorrhage and Transfusion (Preprint)","authors":"H. Ahmadzia, Alexa C Dzienny, Mike Bopf, Jaclyn M Phillips, Jerome Jeffrey Federspiel, Richard Amdur, Madeline Murguia Rice, Laritza Rodriguez","doi":"10.2196/52059","DOIUrl":null,"url":null,"abstract":"Objectives: To improve PPH prediction and to compare machine learning and traditional statistical methods. Design: Cross-sectional Setting: Deliveries across US hospitals Population: Deliveries across 12 US hospitals from the 2002-2008 Consortium for Safe Labor dataset Method: We developed models using the Consortium for Safe Labor dataset. Fifty antepartum and intrapartum characteristics and hospital characteristics were included. Logistic regression, support vector machines, multi-layer perceptron, random forest","PeriodicalId":73552,"journal":{"name":"JMIR bioinformatics and biotechnology","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR bioinformatics and biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/52059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: To improve PPH prediction and to compare machine learning and traditional statistical methods. Design: Cross-sectional Setting: Deliveries across US hospitals Population: Deliveries across 12 US hospitals from the 2002-2008 Consortium for Safe Labor dataset Method: We developed models using the Consortium for Safe Labor dataset. Fifty antepartum and intrapartum characteristics and hospital characteristics were included. Logistic regression, support vector machines, multi-layer perceptron, random forest
预测产妇出血和输血的机器学习(预印本)
目的:改进 PPH 预测,比较机器学习和传统统计方法。设计:横断面横断面美国医院的分娩人口:来自 2002-2008 年安全分娩联盟数据集的 12 家美国医院的分娩情况:我们利用安全分娩联盟的数据集开发了模型。其中包括 50 个产前和产中特征以及医院特征。逻辑回归、支持向量机、多层感知器、随机森林
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信