Image-Based Hand Tools and Accessories Recognition by ResNet50

C. Pornpanomchai
{"title":"Image-Based Hand Tools and Accessories Recognition by ResNet50","authors":"C. Pornpanomchai","doi":"10.15379/ijmst.v10i2.3193","DOIUrl":null,"url":null,"abstract":"The objective of this research is to create a computer system which can recognize various kinds of hand-tools by using only a single image.  The developed system is called “Hand-tool and accessory image recognition system or (HTAIRS)”.  The system consists of 4 main modules, namely: 1) dataset training, 2) image acquisition, 3) image recognition, and 4) result presentation modules.  The system employs the convolutional neural networks (CNN) called “ResNet50”, which is a toolbox in MATLAB software.  The developed system creates its own dataset called “Hand Tools Dataset”, which consists of 165 different video clips in 110 hand tool categories and 600 images each. The HTAIRS separates 500 images for training dataset and 100 images for evaluating the system.  The accuracy of the training system is 99.30% and the accuracy that of the evaluating is also 99.30%.  The system’s average access time are is 0.8549 Seconds per image.","PeriodicalId":301862,"journal":{"name":"International Journal of Membrane Science and Technology","volume":"153 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Membrane Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15379/ijmst.v10i2.3193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of this research is to create a computer system which can recognize various kinds of hand-tools by using only a single image.  The developed system is called “Hand-tool and accessory image recognition system or (HTAIRS)”.  The system consists of 4 main modules, namely: 1) dataset training, 2) image acquisition, 3) image recognition, and 4) result presentation modules.  The system employs the convolutional neural networks (CNN) called “ResNet50”, which is a toolbox in MATLAB software.  The developed system creates its own dataset called “Hand Tools Dataset”, which consists of 165 different video clips in 110 hand tool categories and 600 images each. The HTAIRS separates 500 images for training dataset and 100 images for evaluating the system.  The accuracy of the training system is 99.30% and the accuracy that of the evaluating is also 99.30%.  The system’s average access time are is 0.8549 Seconds per image.
ResNet50 基于图像的手动工具和配件识别
这项研究的目的是创建一个计算机系统,只需使用一张图像就能识别各种手工工具。 开发的系统被称为 "手工具和附件图像识别系统(HTAIRS)"。 该系统由 4 个主要模块组成,即1)数据集训练模块;2)图像采集模块;3)图像识别模块;4)结果展示模块。 系统采用了名为 "ResNet50 "的卷积神经网络(CNN),它是 MATLAB 软件中的一个工具箱。 所开发的系统创建了自己的数据集,名为 "手工工具数据集",其中包括 110 个手工工具类别的 165 个不同视频剪辑,每个类别有 600 张图像。HTAIRS 分离出 500 幅图像作为训练数据集,100 幅图像作为系统评估数据集。 训练系统的准确率为 99.30%,评估系统的准确率也是 99.30%。 系统对每张图片的平均访问时间为 0.8549 秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信