Domain walls and vector solitons in the coupled nonlinear Schrödinger equation

David D. J. M. Snee, Yi-ping Ma
{"title":"Domain walls and vector solitons in the coupled nonlinear Schrödinger equation","authors":"David D. J. M. Snee, Yi-ping Ma","doi":"10.1088/1751-8121/ad1622","DOIUrl":null,"url":null,"abstract":"We outline a program to classify domain walls (DWs) and vector solitons in the 1D two-component coupled nonlinear Schrödinger (CNLS) equation without restricting the signs or magnitudes of any coefficients. The CNLS equation is reduced first to a complex ordinary differential equation (ODE), and then to a real ODE after imposing a restriction. In the real ODE, we identify four possible equilibria including ZZ, ZN, NZ, and NN, with Z (N) denoting a zero (nonzero) value in a component, and analyze their spatial stability. We identify two types of DWs including asymmetric DWs between ZZ and NN and symmetric DWs between ZN and NZ. We identify three codimension-1 mechanisms for generating vector solitons in the real ODE including heteroclinic cycles, local bifurcations, and exact solutions. Heteroclinic cycles are formed by assembling two DWs back-to-back and generate extended bright-bright (BB), dark-dark (DD), and dark-bright (DB) solitons. Local bifurcations include the Turing (Hamiltonian-Hopf) bifurcation that generates Turing solitons with oscillatory tails and the pitchfork bifurcation that generates DB, bright-antidark, DD, and dark-antidark solitons with monotonic tails. Exact solutions include scalar bright and dark solitons with vector amplitudes. Any codimension-1 real vector soliton can be numerically continued into a codimension-0 family. Complex vector solitons have two more parameters: a dark or antidark component can be numerically continued in the wavenumber, while a bright component can be multiplied by a constant phase factor. We introduce a numerical continuation method to find real and complex vector solitons and show that DWs and DB solitons in the immiscible regime can be related by varying bifurcation parameters. We show that collisions between two DB solitons with a nonzero phase difference in their bright components typically feature a mass exchange that changes the frequencies and phases of the two bright components and the two soliton velocities.","PeriodicalId":502730,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad1622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We outline a program to classify domain walls (DWs) and vector solitons in the 1D two-component coupled nonlinear Schrödinger (CNLS) equation without restricting the signs or magnitudes of any coefficients. The CNLS equation is reduced first to a complex ordinary differential equation (ODE), and then to a real ODE after imposing a restriction. In the real ODE, we identify four possible equilibria including ZZ, ZN, NZ, and NN, with Z (N) denoting a zero (nonzero) value in a component, and analyze their spatial stability. We identify two types of DWs including asymmetric DWs between ZZ and NN and symmetric DWs between ZN and NZ. We identify three codimension-1 mechanisms for generating vector solitons in the real ODE including heteroclinic cycles, local bifurcations, and exact solutions. Heteroclinic cycles are formed by assembling two DWs back-to-back and generate extended bright-bright (BB), dark-dark (DD), and dark-bright (DB) solitons. Local bifurcations include the Turing (Hamiltonian-Hopf) bifurcation that generates Turing solitons with oscillatory tails and the pitchfork bifurcation that generates DB, bright-antidark, DD, and dark-antidark solitons with monotonic tails. Exact solutions include scalar bright and dark solitons with vector amplitudes. Any codimension-1 real vector soliton can be numerically continued into a codimension-0 family. Complex vector solitons have two more parameters: a dark or antidark component can be numerically continued in the wavenumber, while a bright component can be multiplied by a constant phase factor. We introduce a numerical continuation method to find real and complex vector solitons and show that DWs and DB solitons in the immiscible regime can be related by varying bifurcation parameters. We show that collisions between two DB solitons with a nonzero phase difference in their bright components typically feature a mass exchange that changes the frequencies and phases of the two bright components and the two soliton velocities.
耦合非线性薛定谔方程中的域墙和矢量孤子
我们概述了在不限制任何系数的符号或大小的情况下对一维两分量耦合非线性薛定谔(CNLS)方程中的域壁(DW)和矢量孤子进行分类的程序。我们首先将 CNLS 方程简化为复数普通二阶方程(ODE),然后在施加限制后将其简化为实数 ODE。在实 ODE 中,我们确定了四种可能的均衡点,包括 ZZ、ZN、NZ 和 NN,其中 Z (N) 表示分量中的零值(非零值),并分析了它们的空间稳定性。我们发现了两类 DW,包括 ZZ 和 NN 之间的非对称 DW,以及 ZN 和 NZ 之间的对称 DW。我们确定了在实 ODE 中产生矢量孤子的三种标度-1 机制,包括异次元循环、局部分岔和精确解。异次元循环由两个 DW 背靠背组合而成,并产生扩展的亮-亮(BB)、暗-暗(DD)和暗-亮(DB)孤子。局部分岔包括图灵(哈密顿-霍普夫)分岔(产生具有振荡尾部的图灵孤子)和 pitchfork 分岔(产生具有单调尾部的 DB、明-暗孤子、DD 和暗-明孤子)。精确解包括具有矢量振幅的标量亮孤子和暗孤子。任何标度为 1 的实矢量孤子都可以在数值上延续到标度为 0 的族中。复矢量孤子还有两个参数:暗分量或反暗分量可以在波数上进行数值延续,而亮分量可以乘以一个恒定的相位因子。我们引入了一种数值延续方法来确定实矢量和复矢量孤子,并证明了通过改变分岔参数,可以将不溶体系中的 DW 和 DB 孤子联系起来。我们的研究表明,两个DB孤子的亮分量相位差不为零,它们之间的碰撞通常会发生质量交换,从而改变两个亮分量的频率和相位以及两个孤子的速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信