E-Commerce Product Recommendation System Using Case-Based Reasoning (CBR) and K-Means Clustering

Legito, Fegie Yoanti, Wattimena, Yulianto Umar Rofi'
{"title":"E-Commerce Product Recommendation System Using Case-Based Reasoning (CBR) and K-Means Clustering","authors":"Legito, Fegie Yoanti, Wattimena, Yulianto Umar Rofi'","doi":"10.35870/ijsecs.v3i2.1527","DOIUrl":null,"url":null,"abstract":"This research proposes and implements an e-commerce product recommendation system that combines Case-Based Reasoning (CBR) and K-Means Clustering algorithms. The main aim of this research is to provide more personalized and relevant product recommendations to e-commerce users. The CBR approach leverages users' transaction history to provide customized recommendations, whereas K-Means Clustering groups users with similar preferences increase the relevance of recommendations. This study assesses the effectiveness of the system by conducting a comprehensive evaluation by comparing system recommendations with actual user preferences. The results of this study reveal that the combined approach of CBR and K-Means Clustering can improve the performance of e-commerce product recommendations, ensure the accuracy of recommendations, and produce a more satisfying shopping experience for users. Although there are limitations in terms of the dataset used and the choice of algorithm parameters, this research makes an important contribution in developing a more adaptive and personalized recommendation system for e-commerce platforms.","PeriodicalId":508798,"journal":{"name":"International Journal Software Engineering and Computer Science (IJSECS)","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal Software Engineering and Computer Science (IJSECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35870/ijsecs.v3i2.1527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research proposes and implements an e-commerce product recommendation system that combines Case-Based Reasoning (CBR) and K-Means Clustering algorithms. The main aim of this research is to provide more personalized and relevant product recommendations to e-commerce users. The CBR approach leverages users' transaction history to provide customized recommendations, whereas K-Means Clustering groups users with similar preferences increase the relevance of recommendations. This study assesses the effectiveness of the system by conducting a comprehensive evaluation by comparing system recommendations with actual user preferences. The results of this study reveal that the combined approach of CBR and K-Means Clustering can improve the performance of e-commerce product recommendations, ensure the accuracy of recommendations, and produce a more satisfying shopping experience for users. Although there are limitations in terms of the dataset used and the choice of algorithm parameters, this research makes an important contribution in developing a more adaptive and personalized recommendation system for e-commerce platforms.
使用案例推理(CBR)和 K-Means 聚类的电子商务产品推荐系统
本研究提出并实现了一种电子商务产品推荐系统,该系统结合了基于案例的推理(CBR)和 K-Means 聚类算法。这项研究的主要目的是为电子商务用户提供更加个性化和相关的产品推荐。CBR 方法利用用户的交易历史记录来提供定制推荐,而 K-Means 聚类算法则将具有相似偏好的用户分组,从而提高推荐的相关性。本研究通过比较系统推荐与实际用户偏好,对系统的有效性进行了全面评估。研究结果表明,CBR 和 K-Means 聚类相结合的方法可以提高电子商务产品推荐的性能,确保推荐的准确性,为用户提供更满意的购物体验。虽然在使用的数据集和算法参数选择方面存在局限性,但本研究在为电子商务平台开发更具适应性和个性化的推荐系统方面做出了重要贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信