Legito, Fegie Yoanti, Wattimena, Yulianto Umar Rofi'
{"title":"E-Commerce Product Recommendation System Using Case-Based Reasoning (CBR) and K-Means Clustering","authors":"Legito, Fegie Yoanti, Wattimena, Yulianto Umar Rofi'","doi":"10.35870/ijsecs.v3i2.1527","DOIUrl":null,"url":null,"abstract":"This research proposes and implements an e-commerce product recommendation system that combines Case-Based Reasoning (CBR) and K-Means Clustering algorithms. The main aim of this research is to provide more personalized and relevant product recommendations to e-commerce users. The CBR approach leverages users' transaction history to provide customized recommendations, whereas K-Means Clustering groups users with similar preferences increase the relevance of recommendations. This study assesses the effectiveness of the system by conducting a comprehensive evaluation by comparing system recommendations with actual user preferences. The results of this study reveal that the combined approach of CBR and K-Means Clustering can improve the performance of e-commerce product recommendations, ensure the accuracy of recommendations, and produce a more satisfying shopping experience for users. Although there are limitations in terms of the dataset used and the choice of algorithm parameters, this research makes an important contribution in developing a more adaptive and personalized recommendation system for e-commerce platforms.","PeriodicalId":508798,"journal":{"name":"International Journal Software Engineering and Computer Science (IJSECS)","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal Software Engineering and Computer Science (IJSECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35870/ijsecs.v3i2.1527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This research proposes and implements an e-commerce product recommendation system that combines Case-Based Reasoning (CBR) and K-Means Clustering algorithms. The main aim of this research is to provide more personalized and relevant product recommendations to e-commerce users. The CBR approach leverages users' transaction history to provide customized recommendations, whereas K-Means Clustering groups users with similar preferences increase the relevance of recommendations. This study assesses the effectiveness of the system by conducting a comprehensive evaluation by comparing system recommendations with actual user preferences. The results of this study reveal that the combined approach of CBR and K-Means Clustering can improve the performance of e-commerce product recommendations, ensure the accuracy of recommendations, and produce a more satisfying shopping experience for users. Although there are limitations in terms of the dataset used and the choice of algorithm parameters, this research makes an important contribution in developing a more adaptive and personalized recommendation system for e-commerce platforms.