DFT and Electrochemical Study of Novel Green Corrosion Inhibitor (Pyrantrin) for 1100-H14 Aluminum Corrosion Remediation in 1 M H2SO4 Acidic Environment

B. Ugi
{"title":"DFT and Electrochemical Study of Novel Green Corrosion Inhibitor (Pyrantrin) for 1100-H14 Aluminum Corrosion Remediation in 1 M H2SO4 Acidic Environment","authors":"B. Ugi","doi":"10.18596/jotcsa.1234194","DOIUrl":null,"url":null,"abstract":"The study on Corrosion Inhibition of 1100-H14 Aluminum in H2SO4 Acidic Deploying pyrantrin as a Green Inhibitor was investigated by adopting different experimental methods, including weight loss, electrochemical impedance spectroscopic, potentiodynamic polarization, and computational methods. It was observed that pyrantrin was a good inhibitor for the 1100–H14–type aluminum. Inhibition efficiency was recorded between 42.5 % and 95.2 % for aluminum at 500 ppm and 1500 ppm concentrations. This high inhibition efficiency was attributed to the strong adsorption of the molecules on both metal surfaces. Electrochemical impedance showed higher and increasing charge transfer resistance values and decreasing values for the double-layer capacitance, indicating better inhibition. From quantum calculations, the EHOMO value was higher than that of the ELUMO, while the energy gap was calculated to be 1.9 with a binding energy of 132.9, indicating stronger adsorption and inhibition.","PeriodicalId":17299,"journal":{"name":"Journal of the Turkish Chemical Society Section A: Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Turkish Chemical Society Section A: Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18596/jotcsa.1234194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The study on Corrosion Inhibition of 1100-H14 Aluminum in H2SO4 Acidic Deploying pyrantrin as a Green Inhibitor was investigated by adopting different experimental methods, including weight loss, electrochemical impedance spectroscopic, potentiodynamic polarization, and computational methods. It was observed that pyrantrin was a good inhibitor for the 1100–H14–type aluminum. Inhibition efficiency was recorded between 42.5 % and 95.2 % for aluminum at 500 ppm and 1500 ppm concentrations. This high inhibition efficiency was attributed to the strong adsorption of the molecules on both metal surfaces. Electrochemical impedance showed higher and increasing charge transfer resistance values and decreasing values for the double-layer capacitance, indicating better inhibition. From quantum calculations, the EHOMO value was higher than that of the ELUMO, while the energy gap was calculated to be 1.9 with a binding energy of 132.9, indicating stronger adsorption and inhibition.
新型绿色缓蚀剂(嘧啶)在 1 M H2SO4 酸性环境中修复 1100-H14 铝腐蚀的 DFT 和电化学研究
采用不同的实验方法,包括失重法、电化学阻抗光谱法、电位极化法和计算法,研究了吡咯烷酮作为绿色缓蚀剂在 H2SO4 酸性溶液中对 1100-H14 型铝的缓蚀作用。结果表明,吡咯烷酮对 1100-H14 型铝具有良好的抑制作用。在浓度为 500 ppm 和 1500 ppm 时,对铝的抑制效率分别为 42.5% 和 95.2%。这种高抑制效率归因于分子在两种金属表面的强吸附性。电化学阻抗显示电荷转移电阻值越来越高,而双层电容值则越来越低,这表明抑制效果更好。通过量子计算,EHOMO 值高于 ELUMO 值,能隙为 1.9,结合能为 132.9,表明吸附和抑制作用更强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信