DecLog: Decentralized Logging in Non-Volatile Memory for Time Series Database Systems

Bolong Zheng, Yongyong Gao, J. Wan, Lingsen Yan, Long Hu, Bo Liu, Yunjun Gao, Xiaofang Zhou, Christian S. Jensen
{"title":"DecLog: Decentralized Logging in Non-Volatile Memory for Time Series Database Systems","authors":"Bolong Zheng, Yongyong Gao, J. Wan, Lingsen Yan, Long Hu, Bo Liu, Yunjun Gao, Xiaofang Zhou, Christian S. Jensen","doi":"10.14778/3617838.3617839","DOIUrl":null,"url":null,"abstract":"Growing demands for the efficient processing of extreme-scale time series workloads call for more capable time series database management systems (TSDBMS). Specifically, to maintain consistency and durability of transaction processing, systems employ write-ahead logging (WAL) whereby transactions are committed only after the related log entries are flushed to disk. However, when faced with massive I/O, this becomes a throughput bottleneck. Recent advances in byte-addressable Non-Volatile Memory (NVM) provide opportunities to improve logging performance by persisting logs to NVM instead. Existing studies typically track complex transaction dependencies and use barrier instructions of NVM to ensure log ordering. In contrast, few studies consider the heavy-tailed characteristics of time series workloads, where most transactions are independent of each other. We propose DecLog, a decentralized NVM-based logging system that enables concurrent logging of TSDBMS transactions. Specifically, we propose data-driven log sequence numbering and relaxed ordering strategies to track transaction dependencies and resolve serialization issues. We also propose a parallel logging method to persist logs to NVM after being compressed and aligned. An experimental study on the YCSB-TS benchmark offers insight into the performance properties of DecLog, showing that it improves throughput by up to 4.6× while offering lower recovery time in comparison to the open source TSDBMS Beringei.","PeriodicalId":20467,"journal":{"name":"Proc. VLDB Endow.","volume":"12 1","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. VLDB Endow.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3617838.3617839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Growing demands for the efficient processing of extreme-scale time series workloads call for more capable time series database management systems (TSDBMS). Specifically, to maintain consistency and durability of transaction processing, systems employ write-ahead logging (WAL) whereby transactions are committed only after the related log entries are flushed to disk. However, when faced with massive I/O, this becomes a throughput bottleneck. Recent advances in byte-addressable Non-Volatile Memory (NVM) provide opportunities to improve logging performance by persisting logs to NVM instead. Existing studies typically track complex transaction dependencies and use barrier instructions of NVM to ensure log ordering. In contrast, few studies consider the heavy-tailed characteristics of time series workloads, where most transactions are independent of each other. We propose DecLog, a decentralized NVM-based logging system that enables concurrent logging of TSDBMS transactions. Specifically, we propose data-driven log sequence numbering and relaxed ordering strategies to track transaction dependencies and resolve serialization issues. We also propose a parallel logging method to persist logs to NVM after being compressed and aligned. An experimental study on the YCSB-TS benchmark offers insight into the performance properties of DecLog, showing that it improves throughput by up to 4.6× while offering lower recovery time in comparison to the open source TSDBMS Beringei.
DecLog:时间序列数据库系统非易失性内存中的分散式日志记录
高效处理超大规模时间序列工作负载的需求日益增长,这就需要功能更强大的时间序列数据库管理系统(TSDBMS)。具体来说,为了保持事务处理的一致性和持久性,系统采用了先写日志(WAL)技术,即只有在相关日志条目刷新到磁盘后才提交事务。然而,当面临大量 I/O 时,这就成了吞吐量的瓶颈。字节可寻址非易失性存储器(NVM)的最新进展为通过将日志持久化到 NVM 来提高日志性能提供了机会。现有研究通常会跟踪复杂的事务依赖关系,并使用 NVM 的障碍指令来确保日志排序。相比之下,很少有研究考虑到时间序列工作负载的重尾特性,即大多数事务是相互独立的。我们提出的 DecLog 是一种基于 NVM 的分散式日志系统,可实现 TSDBMS 事务的并发日志记录。具体来说,我们提出了数据驱动的日志序列编号和宽松排序策略,以跟踪事务依赖性并解决序列化问题。我们还提出了一种并行日志记录方法,可在压缩和对齐后将日志持续记录到 NVM 中。通过对 YCSB-TS 基准的实验研究,我们深入了解了 DecLog 的性能特性,结果表明与开源 TSDBMS Beringei 相比,DecLog 的吞吐量提高了 4.6 倍,同时恢复时间更短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信