ShadowAQP: Efficient Approximate Group-by and Join Query via Attribute-oriented Sample Size Allocation and Data Generation

Rong Gu, Han Li, Haipeng Dai, Wenjie Huang, Jie Xue, Meng Li, Jiaqi Zheng, Haoran Cai, Yihua Huang, Guihai Chen
{"title":"ShadowAQP: Efficient Approximate Group-by and Join Query via Attribute-oriented Sample Size Allocation and Data Generation","authors":"Rong Gu, Han Li, Haipeng Dai, Wenjie Huang, Jie Xue, Meng Li, Jiaqi Zheng, Haoran Cai, Yihua Huang, Guihai Chen","doi":"10.14778/3625054.3625059","DOIUrl":null,"url":null,"abstract":"Approximate query processing (AQP) is one of the key techniques to cope with big data querying problem on account that it obtains approximate answers efficiently. To address non-trivial sample selection and heavy sampling cost issues in AQP, we propose ShadowAQP, an efficient and accurate approach based on attribute-oriented sample size allocation and data generation. We select samples according to group-by and join attributes, and determine the sample size for each group of unique value combinations to improve query accuracy. We design a conditional variational autoencoder model with automatic table data encoding and model update strategies. To further improve accuracy and efficiency, we propose a set of extensions, including parallel multi-round sampling aggregation, data outlier-aware sampling, and dimension reduction optimization. Evaluation results on diversified datasets show that, compared with SOTA approaches, ShadowAQP achieves 5.8× query speed performance improvement on average (up to 12.8×), while reducing query error by 74% on average (up to 95%) at the same time.","PeriodicalId":20467,"journal":{"name":"Proc. VLDB Endow.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. VLDB Endow.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3625054.3625059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Approximate query processing (AQP) is one of the key techniques to cope with big data querying problem on account that it obtains approximate answers efficiently. To address non-trivial sample selection and heavy sampling cost issues in AQP, we propose ShadowAQP, an efficient and accurate approach based on attribute-oriented sample size allocation and data generation. We select samples according to group-by and join attributes, and determine the sample size for each group of unique value combinations to improve query accuracy. We design a conditional variational autoencoder model with automatic table data encoding and model update strategies. To further improve accuracy and efficiency, we propose a set of extensions, including parallel multi-round sampling aggregation, data outlier-aware sampling, and dimension reduction optimization. Evaluation results on diversified datasets show that, compared with SOTA approaches, ShadowAQP achieves 5.8× query speed performance improvement on average (up to 12.8×), while reducing query error by 74% on average (up to 95%) at the same time.
ShadowAQP:通过面向属性的样本量分配和数据生成实现高效的近似分组和连接查询
近似查询处理(AQP)是应对大数据查询问题的关键技术之一,因为它能高效地获得近似答案。为了解决近似查询处理中样本选择困难和采样成本高的问题,我们提出了一种基于面向属性的样本大小分配和数据生成的高效、精确的方法--ShadowAQP。我们根据分组和连接属性选择样本,并确定每组唯一值组合的样本大小,以提高查询准确性。我们设计了一个条件变分自动编码器模型,该模型具有自动表数据编码和模型更新策略。为了进一步提高准确性和效率,我们提出了一系列扩展方案,包括并行多轮采样聚合、数据离群感知采样和降维优化。在多样化数据集上的评估结果表明,与 SOTA 方法相比,ShadowAQP 的查询速度平均提高了 5.8 倍(最高达 12.8 倍),同时查询错误平均减少了 74%(最高达 95%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信