Quickly Computing Isotopy Type for Exponential Sums over Circuits (Extended Abstract)

IF 0.4 Q4 MATHEMATICS, APPLIED
Frédéric Bihan, Erika Croy, Weixun Deng, Kaitlyn Phillipson, Robert J. Rennie, J. M. Rojas
{"title":"Quickly Computing Isotopy Type for Exponential Sums over Circuits (Extended Abstract)","authors":"Frédéric Bihan, Erika Croy, Weixun Deng, Kaitlyn Phillipson, Robert J. Rennie, J. M. Rojas","doi":"10.1145/3637529.3637538","DOIUrl":null,"url":null,"abstract":"Fewnomial Theory [Kho91] has established bounds on the number of connected components (a.k.a. pieces) of a broad class of real analytic sets as a function of a particular kind of input complexity, e.g., the number of distinct exponent vectors among a generating set for the underlying ideal. Here, we pursue the algorithmic side: We show how to efficiently compute the exact isotopy type of certain (possibly singular) real zero sets, instead of just estimating their number of pieces. While we focus on the circuit case, our results form the foundation for an approach to the general case that we will pursue later.","PeriodicalId":41965,"journal":{"name":"ACM Communications in Computer Algebra","volume":"15 1","pages":"152 - 155"},"PeriodicalIF":0.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Communications in Computer Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3637529.3637538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Fewnomial Theory [Kho91] has established bounds on the number of connected components (a.k.a. pieces) of a broad class of real analytic sets as a function of a particular kind of input complexity, e.g., the number of distinct exponent vectors among a generating set for the underlying ideal. Here, we pursue the algorithmic side: We show how to efficiently compute the exact isotopy type of certain (possibly singular) real zero sets, instead of just estimating their number of pieces. While we focus on the circuit case, our results form the foundation for an approach to the general case that we will pursue later.
快速计算电路指数和的等式类型(扩展摘要)
Fewnomial Theory [Kho91]已经建立了一大类实数解析集合的连通成分(又称片段)的数量边界,作为一种特定输入复杂度的函数,例如,底层理想的生成集合中不同指数向量的数量。在这里,我们追求的是算法方面:我们展示了如何高效计算某些(可能是奇异的)实零集的精确等式类型,而不仅仅是估算它们的个数。虽然我们关注的是电路情况,但我们的结果为我们以后研究一般情况的方法奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信