On Fuzzy Negations and Laws of Contraposition. Lattice of Fuzzy Negations

IF 1 Q1 MATHEMATICS
Adam Grabowski
{"title":"On Fuzzy Negations and Laws of Contraposition. Lattice of Fuzzy Negations","authors":"Adam Grabowski","doi":"10.2478/forma-2023-0014","DOIUrl":null,"url":null,"abstract":"Summary This the next article in the series formalizing the book of Baczyński and Jayaram “Fuzzy Implications”. We define the laws of contraposition connected with various fuzzy negations, and in order to make the cluster registration mechanism fully working, we construct some more non-classical examples of fuzzy implications. Finally, as the testbed of the reuse of lattice-theoretical approach, we introduce the lattice of fuzzy negations and show its basic properties.","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formalized Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/forma-2023-0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Summary This the next article in the series formalizing the book of Baczyński and Jayaram “Fuzzy Implications”. We define the laws of contraposition connected with various fuzzy negations, and in order to make the cluster registration mechanism fully working, we construct some more non-classical examples of fuzzy implications. Finally, as the testbed of the reuse of lattice-theoretical approach, we introduce the lattice of fuzzy negations and show its basic properties.
论模糊否定句和反义词法则。模糊否定格
摘要 这是巴钦斯基和贾亚拉姆《模糊蕴涵》一书形式化系列的下一篇文章。我们定义了与各种模糊否定相关的反证法,为了使聚类注册机制充分发挥作用,我们构建了一些更多的模糊蕴涵的非经典示例。最后,作为格子理论方法再利用的试验平台,我们介绍了模糊否定的格子,并展示了它的基本特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Formalized Mathematics
Formalized Mathematics MATHEMATICS-
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊介绍: Formalized Mathematics is to be issued quarterly and publishes papers which are abstracts of Mizar articles contributed to the Mizar Mathematical Library (MML) - the basis of a knowledge management system for mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信