C. V. Niño Rondón, Manuel Guillermo Forero-Vargas, S. A. Castro-Casadiego
{"title":"Transformaciones geométricas vs Inducción de ruido: Comparación de técnicas de aumentado de datos para análisis de imágenes dermoscópicas","authors":"C. V. Niño Rondón, Manuel Guillermo Forero-Vargas, S. A. Castro-Casadiego","doi":"10.22463/0122820x.4276","DOIUrl":null,"url":null,"abstract":"El conjunto de datos HAM10000, una colección de imágenes dermatoscópicas de lesiones cutáneas, se ha convertido en un recurso valioso para la investigación en dermatología y aprendizaje automático. Este estudio se enfoca en evaluar la eficiencia de dos técnicas de aumento de datos aplicadas a imágenes del conjunto HAM10000 de cáncer de piel. Las técnicas evaluadas en este contexto fueron las transformaciones geométricas e inducción de ruido gaussiano. En la fase metodológica, se implementó la técnica de Análisis de Componentes Principales (PCA) para comparar las imágenes originales con aquellas aumentadas por cada enfoque. Este análisis permitió una comprensión más profunda de las modificaciones introducidas por cada técnica, ofreciendo percepciones sobre la preservación de características relevantes para la clasificación de lesiones cutáneas. Los resultados obtenidos revelaron un rendimiento superior al emplear la técnica de inducción de ruido gaussiano. Esta técnica demostró ser especialmente eficaz en mejorar la calidad del conjunto de datos, contribuyendo positivamente a las tareas de diagnóstico de cáncer de piel. El análisis a través de PCA no solo respaldó la eficacia de la técnica de inducción de ruido gaussiano, sino que también proporcionó una visión detallada de cómo esta técnica conserva información crucial durante el proceso de aumento de datos. este estudio no solo destaca la relevancia del conjunto de datos HAM10000 en la investigación dermatológica, sino que también enfatiza la importancia de seleccionar técnicas de aumento de datos adecuadas, con la inducción de ruido gaussiano emergiendo como una opción altamente eficiente para mejorar la precisión de modelos de aprendizaje automático aplicados a imágenes médicas en el contexto del cáncer de piel.","PeriodicalId":20991,"journal":{"name":"Respuestas","volume":"160 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respuestas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22463/0122820x.4276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
El conjunto de datos HAM10000, una colección de imágenes dermatoscópicas de lesiones cutáneas, se ha convertido en un recurso valioso para la investigación en dermatología y aprendizaje automático. Este estudio se enfoca en evaluar la eficiencia de dos técnicas de aumento de datos aplicadas a imágenes del conjunto HAM10000 de cáncer de piel. Las técnicas evaluadas en este contexto fueron las transformaciones geométricas e inducción de ruido gaussiano. En la fase metodológica, se implementó la técnica de Análisis de Componentes Principales (PCA) para comparar las imágenes originales con aquellas aumentadas por cada enfoque. Este análisis permitió una comprensión más profunda de las modificaciones introducidas por cada técnica, ofreciendo percepciones sobre la preservación de características relevantes para la clasificación de lesiones cutáneas. Los resultados obtenidos revelaron un rendimiento superior al emplear la técnica de inducción de ruido gaussiano. Esta técnica demostró ser especialmente eficaz en mejorar la calidad del conjunto de datos, contribuyendo positivamente a las tareas de diagnóstico de cáncer de piel. El análisis a través de PCA no solo respaldó la eficacia de la técnica de inducción de ruido gaussiano, sino que también proporcionó una visión detallada de cómo esta técnica conserva información crucial durante el proceso de aumento de datos. este estudio no solo destaca la relevancia del conjunto de datos HAM10000 en la investigación dermatológica, sino que también enfatiza la importancia de seleccionar técnicas de aumento de datos adecuadas, con la inducción de ruido gaussiano emergiendo como una opción altamente eficiente para mejorar la precisión de modelos de aprendizaje automático aplicados a imágenes médicas en el contexto del cáncer de piel.