Computing a Mechanism for a Bayesian and Partially Observable Markov Approach

J. Clempner, A. Poznyak
{"title":"Computing a Mechanism for a Bayesian and Partially Observable Markov Approach","authors":"J. Clempner, A. Poznyak","doi":"10.34768/amcs-2023-0034","DOIUrl":null,"url":null,"abstract":"Abstract The design of incentive-compatible mechanisms for a certain class of finite Bayesian partially observable Markov games is proposed using a dynamic framework. We set forth a formal method that maintains the incomplete knowledge of both the Bayesian model and the Markov system’s states. We suggest a methodology that uses Tikhonov’s regularization technique to compute a Bayesian Nash equilibrium and the accompanying game mechanism. Our framework centers on a penalty function approach, which guarantees strong convexity of the regularized reward function and the existence of a singular solution involving equality and inequality constraints in the game. We demonstrate that the approach leads to a resolution with the smallest weighted norm. The resulting individually rational and ex post periodic incentive compatible system satisfies this requirement. We arrive at the analytical equations needed to compute the game’s mechanism and equilibrium. Finally, using a supply chain network for a profit maximization problem, we demonstrate the viability of the proposed mechanism design.","PeriodicalId":502322,"journal":{"name":"International Journal of Applied Mathematics and Computer Science","volume":"6 1","pages":"463 - 478"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34768/amcs-2023-0034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The design of incentive-compatible mechanisms for a certain class of finite Bayesian partially observable Markov games is proposed using a dynamic framework. We set forth a formal method that maintains the incomplete knowledge of both the Bayesian model and the Markov system’s states. We suggest a methodology that uses Tikhonov’s regularization technique to compute a Bayesian Nash equilibrium and the accompanying game mechanism. Our framework centers on a penalty function approach, which guarantees strong convexity of the regularized reward function and the existence of a singular solution involving equality and inequality constraints in the game. We demonstrate that the approach leads to a resolution with the smallest weighted norm. The resulting individually rational and ex post periodic incentive compatible system satisfies this requirement. We arrive at the analytical equations needed to compute the game’s mechanism and equilibrium. Finally, using a supply chain network for a profit maximization problem, we demonstrate the viability of the proposed mechanism design.
计算贝叶斯和部分可观测马尔可夫方法的机制
摘 要 本文利用动态框架提出了如何为某类有限贝叶斯部分可观测马尔可夫博弈设计激励相容机制。我们提出了一种保持贝叶斯模型和马尔可夫系统状态的不完全知识的正式方法。我们提出了一种使用提霍诺夫正则化技术计算贝叶斯纳什均衡和相应博弈机制的方法。我们的框架以惩罚函数方法为核心,该方法保证了正则化奖励函数的强凸性,以及博弈中涉及平等和不平等约束的奇异解的存在。我们证明,这种方法可以得到加权规范最小的解。由此产生的个体理性和事后周期性激励兼容系统满足这一要求。我们得出了计算博弈机制和均衡所需的分析方程。最后,我们利用供应链网络来解决利润最大化问题,证明了所提出的机制设计是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信